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Abstract: The successful transfer toward green renewable energy depends heavily on good, reliable
Energy Storage Systems (ESS). Lithium-ion batteries are the preferred choice for many applications;
however, they need careful management, especially an accurate State-Of-Charge (SOC) estimation.
Hence, in this paper an overview of some SOC estimation methods is briefly described; then, an
automated battery cell test system prototype that will enable further improvement is designed
and implemented. Some tests are conducted on an aged lithium-ion cell and the obtained results
are satisfactory and accurate with an error of around 0.5 × 10−3 (V or A), thus validating the
proposed prototype.

Keywords: Energy Storage Systems (ESS); State-Of-Charge (SOC); state-of-health; lithium-ion battery;
Battery Management System (BMS); battery test; battery characterization prototype

1. Introduction

Lithium-ion cells can be considered the backbone of many Battery Energy Storage
Systems (BESS). They have many relative advantages when compared to other cells, such
as power density, power throughput, high lifecycle, and low self-discharge; however, they
need careful management. Lithium-ion cells are available in numerous types and brands
with different characteristics. By connecting them in series and/or parallel, these cells
are used to construct batteries of different voltages and capacities, from a few watt hours
to hundreds of Megawatt-hours. These are widely used in various applications, such as
electric vehicles (EVs), storage of renewable energy, power banks, electric yachts, bikes,
scooters, laptops, smartphones, and many other applications. In each application, lithium-
ion batteries are used in different ways and in different conditions. In order to manage and
run them effectively and securely, many parameters should be taken into consideration.
One of the important parameters that should be known and monitored in real time is the
state of charge (SOC), which represents the amount of capacity left in the battery (in Ah) as
a percentage of its maximum capacity. In addition, it is important to estimate the state of
health (SOH) of a battery, which represents the total amount of energy that the battery can
hold and deliver compared to a fresh battery [1–3].

Because of the global transfer toward renewable green energy, and increasing de-
mand of BESS-based systems like EVs and smart grids, many developments have been
undertaken to BMS (Battery Management System) technology to become more efficient
and reliable. Moreover, to provide good management of the batteries, particularly SOC
and SOH estimations, many techniques have been proposed by researchers and developers
for SOC estimation. Some of the approaches are enhancing the existing techniques and
some of them are more recent, such as Data-Driven Model-based methods using Machine
Learning (ML) that show very interesting results [1,4,5]. However, although the noticed im-
provements in SOC estimation methods are important, there is as yet no universal solution
for SOC estimation sufficiently accurate for every battery in any condition; therefore, more
research and development are still to be done in this field.
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Wrong estimation of lithium-ion batteries’ SOC can lead to sudden failure or complete
shutdown of any BESS-based system, and rapid degradation of the batteries’ ability to
store and deliver energy due to overcharge or discharge that can occur, potentially causing
an unsafe situation. The estimation of SOC is not a direct measurement, but is a tricky
operation and depends on many other parameters like voltage, current, temperature, and
aging. There are various methods used to estimate the SOC. The criteria to choose the best
method for a certain application is that it should be an online method without affecting the
performance of the batteries, and with less computational complexity and high estimating
accuracy [2,6]. Hence, this paper presents a prototype battery characterization system
that will be used as a low-cost laboratory test bed in order to develop and test advanced
estimation techniques for SOC and SOH estimations.

2. State of Charge Estimating Methods Overview

Due to the recent increased need for BESS-dependent systems such as EVs and re-
newable ESS, several research works and ongoing development have been undertaken to
improve the performance and the reliability of such systems, by making battery manage-
ment systems more sophisticated and more accurate. One of the main tasks of the battery
management system is to accurately control SOC and SOH as much as possible in real time
to prevent any unwanted scenarios. Thus, many methods have been developed to estimate
the SOC, and each of them can be more suitable than the others for certain applications.

2.1. Open Circuit Voltage (OCV)

Open circuit voltage is getting the SOC of the battery by converting its open circuit
voltage to its state of charge using a predefined look-up table that maps the OCV to
SOC. This method is quite precise; however, it is not too practical in real applications. In
fact, the battery should be at rest for a large amount of time until the stabilization of its
electrochemistry; then, the OCV measurement can be performed and compared to the
look-up table. The drawback of this method is that one look-up table cannot be used for all
batteries; mostly, it is affected by the battery itself, its type, and its aging [7,8].

2.2. Coulomb Counting

This method is very common and simple. It depends on counting the amount of the
charge flow in or out of the battery in (Ah) by integrating the current in time. This method
can be expressed by Equation (1) where I is the current entering the battery, SOC (t = 0) is
the initial estimated SOC, and C max is the maximum capacity that the battery is able to
store and deliver.

SOC(t) = SOC(t = 0) +
1

C max

∫ t

t=0
Idt (1)

An accurate estimation of this method depends directly on high-precision measure-
ment of the current and knowing the exact initial state of charge SOC (t = 0) and the
state of health SOH. Therefore, any slight errors that will occur even with high-precision
measurements will cause an accumulated error over time; in the process, it will cause a
large deviation in the SOC estimation [2,3,9].

2.3. Voltage Method

This depends on the different existing discharging curves that are generated experi-
mentally for certain batteries. It is not computationally complex and suitable for constant
current applications and constant conditions in general; however, when the current or
temperature is fluctuating, its accuracy will decline and it will no longer be practical. Thus,
it is not very practical for real applications [1,2].

2.4. Kalman Filter

Kalman filter is an algorithm that can estimate the inner state of many systems; as well
as this, it can be used for SOC estimation of a battery with a suitable model. It is based on
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the current, voltage, and temperature measurements to estimate the state of charge [1]. EKF
(extended Kalman Filter) compares the cell voltage that was actually measured to the cell
voltage that a battery model predicted to estimate the battery SOC after corrections [10].

2.5. Equivalent Circuit Model (ECM)

This technique presents the battery as an electric equivalent circuit model by choosing
the right circuit and the right values of its components, so that it can predict the parameters
of the battery in real time. Some circuit models are shown in Figures 1 and 2. This method
has acceptable results, it is simple and computationally less complex; however, after the
battery aging, the model chosen can no longer fit the battery behavior [1,11].
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2.6. Impedance Spectroscopy

The internal impedance spectroscopy of lithium-ion batteries can reflect the SOC with
a high accuracy. By analyzing the impedance of the battery at different frequencies from
40 Hz to 20 kHz, the phase and the modulus is measured and compared to predefined
impedance spectroscopy to get the SOC. Conversely, it is implemented using expansive
hardware; as well as interrupting the battery performance, the external condition and aging
my affect its precision [1,12].

2.7. Data-Driven Model

This method does not depend on any physical model but relies on using artificial
intelligence (AI), where a suitable neural network can be implemented and trained with
sufficient related data of the battery behavior. This technique gained the advantage with
the recent improvement in computational power of the hardware and the massive data that
is generated from different applications like EVs and other BESS systems. However, this
method is computationally complex and has an over-fitting problem [1,4,13].
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3. Problematic

Our state-of-the-art overview of the existing SOC estimation methods led us to sum-
marize the advantages and drawbacks of each technique in Table 1.

Table 1. Advantages/drawbacks of SOC estimation methods.

Method Advantages Disadvantages

Open circuit voltage Simple and accurate The battery should be at rest
for a long time

Coulomb counting Common and simple It will have an accumulated
error over time

Voltage method Easy and simple It is affected by
fluctuating currents

Equivalent circuit model The model is easy to construct It may not reflect the behavior
of the battery over time

Kalman filter Accuracy is good The accuracy depends on the
used model

Impedance spectroscopy Accurate
Need expansive equipment

and its accuracy is affected by
temperature and aging

Data-driven method Accurate and no model is
needed

High compute complexity and
needs a lot of related data

Therefore, due to the diversity of the types and brands of Lithium-ion cells that are
existing today and the different conditions and applications where they can be used; there
is a need for further investigation and improvement of SOC estimating methods. Many
tests should be conducted in regulated conditions, and a lot of data should be generated.
Thus, an affordable Battery cell test system is needed. This article deals with the designing,
implementation, and demonstration of a low-cost prototype battery cell test system that
can perform several types of testing with pretty accurate results. At the same time, it offers
good flexibility and ergonomic use; thus, this will provide more accessibility for more
experiments and tests to be done.

4. Design and Implementation

Lithium-ion cell is not a simple component that has characteristics that can be known
or predicted easily; as well, these characteristics are not linearly correlated. This is due to
its complex electrochemistry behavior in different conditions, and because of the different
types of batteries that already exist and keep emerging every day. Consequently, many
tests should be conducted in a controlled environment to classify and understand more
about the characteristics of the batteries. These tests can include capacity tests, lifecycle
tests, aging, internal resistance, the best temperature for different operations, optimum
charging and discharging current, and testing of the maximum safe limits of the battery
operation in controlled conditions to ensure safe operation in the real world. Thus, these
tests are essential for battery manufacturers, developers, and researchers. The battery can
be in different states: charging, discharging, or at rest (no current flow). At the same time,
the temperature can be varying, and other parameters can be included too. In order to test
the battery in the mentioned states, the battery tester should be automated and consist of at
least: a control unit, data acquisition unit, controlled variable load unit, controlled charging
unit, and possibly adding thermal management unit [14,15] as demonstrated in Figure 3.
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Figure 3. Overall diagram of a battery test system.

The designed system block diagram is shown in Figure 4. It consists of different
components. ESP32 is the main control unit that controls the system. It has an 80 MHz
processor, and 38 IO pins. It communicates with the ADS1115 and controls the LCD screen,
the relays, discharging MOSFET, and charging PNP Transistor using PWM. ADS1115 is
a 16-bit ADC that converts the analog signal to 16-bit 2′s complement format. It senses
voltage 1, which is the voltage of the battery, and the difference between voltage 1 and
voltage 2 that will be divided by the shunt resistor to get the current. The LCD display and
push buttons will be the main user interface, especially when a computer is not connected.
The MicroSD card will be used for data storage, as well as the test instructions that can
be saved and executed without the need for a computer. For the temperature-controlled
chamber, it has not yet been completely implemented. It will consist of two temperature
sensors–one for the chamber, and one for the battery surface. The implemented system is
shown in Figure 5; the components used are outlined in Table 2.
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Table 2. The used component referred in Figure 5.

N◦ Description

1 ESP32
2 ADS1115
3 16*2 LCD display
4 MicroSD card
5 Relays 1 and 2
6 Low-pass RC filters
7 Push buttons
8 Discharging MOSFET
9 Charging transistor
10 Power supply
11 Lithium-ion cell
12 Connections for controlling the temperature chamber
13 Temperature sensors for the temperature-controlled chamber

5. Results and Discussion

A number of tests were performed on an aged lithium-ion cell at room temperature
(around 24 ◦C) with the characteristics described in Table 3.

Table 3. Characteristics of the lithium-ion battery used in our tests.

Manufacturer Model Rated Capacity Maximum
Voltage

Minimum
Voltage

LG LGABD18650 3000 mAh 4.35 V 3.0 V

A Multistage Constant Current (MSCC) charging protocol was applied to the lithium-
ion cell. The results are shown in Figure 6, which resemble the results obtained by the
study in [16] and are illustrated in Figure 7. During this test, the battery was charged with
a constant current of 1 A until it reached 4.35 V; then, the current was stepped down to a
less constant current. Thus, the voltage of the battery drops down; it is kept until it reaches
4.35 V again. The same steps were repeated until the current is less than or equal to 100 mA;
then, the charging process was stopped.
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Figure 8 shows the discharging curve. The battery is discharged with 1 A constant
current until the voltage reached the cutoff voltage of 3.0 V. The x-axis represents the total
capacity discharged in (mAh). Figures 9 and 10 represent the voltage response of the battery
to discharging pulse and charging pulse respectively, with the negative current denoting
the discharging current.

Table 4 shows the performance characteristics of the implemented hardware. As
illustrated in the results, the voltage and current resolution is less than 2 m (V or A) with a
sampling rate of 35 samples/s. This led to satisfactory outcomes with a very small reading
error of approximately 0.5 m (A or V). Thus, the implemented hardware can be used for
some battery characterization purpose.

Table 4. Performance characteristics of the implemented hardware.

Voltage
Resolution

Current
Resolution

Maximum
Sampling

Rate

Maximum
Voltage/
Current

Load
Hysteresis at

1 A

Charging
Hysteresis at

1 A

Voltage
Error

Current
Error

0.187 mV 0.153 mA 35 Samples/s 5 V/5 A <3.5 mA <3 mA 0.6 mV 0.5 mA
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6. Conclusions

This work reported the progress of designing and implementing an automated battery
test system. The tests performed generated acceptable results compared to results reported
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in the literature. The reading voltage and current error were around 0.5 m, which validates
the work and makes the obtained results encouraging to carry on the implementation of
a customized battery characterization system. However, work is still needed to complete
the temperature-controlled chamber and the software running the overall system. In
addition, the discharging and charging circuit need to be improved for more stability, better
performance, and accuracy in general.
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