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Abstract: The structural health monitoring (SHM) of civil structures and infrastructures is becoming
a crucial issue in our smart and hyper-connected age. Due to structural aging and to unexpected
loading conditions, partially linked to extreme events caused by the climate change, reliable and
real-time SHM schemes are currently facing a burst in development and applications. In this work,
we propose a procedure that relies upon a surrogate modeling scheme based on a multi-fidelity (MF)
deep neural network (DNN), which has been conceived to sense and identify a structural damage
under operational (and possibly environmental) variability. By exploiting the sensor recordings from
a densely deployed network within a fully stochastic framework, the MF-DNN model is adopted
to feed a Markov chain Monte Carlo (MCMC) sampling procedure and update the probability
distribution of the structural state, conditioned on noisy observations. As information regarding the
health of real structures is usually rather limited, the datasets to train the MF-DNN are generated with
physical (e.g., finite element) models: high-fidelity (HF) and low-fidelity (LF) models are adopted
to simulate the structural response under the mentioned varying conditions, respectively, in the
presence or absence of a structural damage. As far as the architecture of the DNN is concerned, the
MF approach is obtained by merging a fully connected LF-DNN and a long short-term memory
HF-DNN. The LF-DNN mimics the output of the sensor network in the undamaged condition, while
the HF-DNN is exploited to improve the LF model and appropriately catch the structural response in
the presence of a pre-defined set of damaged patterns. Thanks to the adaptive enrichment of the LF
signals carried out by the MF-DNN, the proposed model updating strategy is reported capable of
locating (and possibly quantifying) a damage event.

Keywords: structural health monitoring; Markov chain Monte Carlo; deep learning; multi-fidelity
methods; damage identification; Bayesian model updating

1. Introduction

In civil engineering, numerical models are often used to approximate the structural
response of real-life structures, accounting also for uncertainties related to their geometrical
and material properties. Within this field, a relevant challenge concerns the optimal
management of deteriorating structural systems. The evolution from classical time-based
maintenance practices with scheduled inspections toward condition-based ones has been
recently put forth, to increase the system safety and availability at the same time [1,2]. This
is made possible by permanent data collecting systems and by diagnostic activities, to feed
a digital twin of the structural system. SHM has thus become a standard and widespread
framework for the identification of damage inception and evolution under varying loading
conditions. Vibration-based SHM techniques exploit dynamic response data collected by a
sensor network, to assess the damage; this perspective looks therefore well suited for an
automated monitoring and to substitute non-destructive tests [3,4].
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Approaches to SHM can be classified as either data-driven [5–8] or model-based [9,10]:
the former, which is the one we focus on in this work, exploits the data to dig into the
relationship between the structural response, in terms of, e.g., selected features, and the
damage pattern to be identified [11,12]; the latter exploits instead physics-based numerical
models to assess the damage via model updating [13]. To deal with uncertainties in
a proper way and sampling solutions from the relevant probability density functions
(pdfs), MCMC methods are frequently adopted [14,15]. Such procedures can incur in high
computational costs, mainly linked to repeated evaluations of the nunerical model they rely
upon, thus preventing real-time applications. The computational efficiency can be improved
by replacing computationally demanding numerical models with data-driven surrogate
models, obsersve, e.g., [16–19]. In the case of multiple models available to simulate the
structural response with a different accuracy, namely in case of a MF framework, the
simultaneous use of LF and HF model responses can provide a reduction of the overall
computational burden, also keeping a selective accuracy of the global output high enough
to allow the localization and quantification of damage.

Along the aforementioned research line, in this work we propose a MF-DNN surrogate
model, observe, e.g., [20,21]. Such a model is characterized by a multi-level architecture
based on two DNNs, which are, respectively, the LF and HF parts of the entire model. A
fully-connected DNN is used to mimic sensor recordings in the undamaged structural
state, whilst a long short-term memory (LSTM)-based model is used to approximate the
effect of damage on the structural response. The two DNNs are trained on data related
to the vibration responses, within a simulation-based paradigm. The performance of the
proposed method is assessed on a L-shaped cantilever beam, to obtain insights into its
accuracy and efficiency.

2. MF-DNN Surrogate Modeling

As already pointed out, the LF and HF datasets DLF and DHF, respectively, collect the
structural responses in the absence and presence of the damage. As customarily assumed,
the initial SHM phase refers to the undamaged state. Datasets DLF and DHF consist of ILF
and IHF < ILF instances, so that:

DLF = {(xLFi , ULF
i )}ILF

i=1 , DHF = {(xHFj , UHF
j )}IHF

j=1 , (1)

where: xLFi ∈ RNLFpar represents the operational conditions inducing the LF vibration record-
ings ULF

i (xLFi ) = [uLF
1 , . . . , uLF

Nu
]i ∈ RNu×L; the Nu time series are assumed made of L

measurements in the time interval (0, T); the damage is accounted for in the HF recordings
UHF

j (xHFj ) = [uHF
1 , . . . , uHF

Nu
]j ∈ RNu×L; the NHFpar input parameters xHFj ∈ RNHFpar control instead

the operational and the damage conditions in the current state.
The HF model describes the dynamic response of the structure under the applied

loadings, assuming a linearized kinematic. The semi-discretized equations of the motion
thus read:

MHFd̈HF(t) + CHF(xHF)ḋHF(t) + KHF(xHF)dHF(t) = fHF(t, xHF) , (2)

to be supplemented by the relevant initial conditions dHF(0) = dHF
0 and ḋHF(0) = ḋHF

0
in terms of nodal displacements and velocities, respectively. Here: t ∈ (0, T) denotes
time; dHF(t), ḋHF(t), d̈HF ∈ RM are the vectors of nodal displacements, velocities and
accelerations;M is the number of system degrees of freedom (dofs); MHF ∈ RM×M is the
mass matrix; CHF(xHF) ∈ RM×M is the damping matrix; KHF(xHF) ∈ RM×M is the stiffness
matrix; fHF(t, xHF) ∈ RM is the vector of external forces.

The structural damage is modeled as a localized degradation of the material stiffness,
which is dealt with by means of a parametrization of the stiffness matrix KHF through the
variables y ∈ R3 and δ ∈ R, collected in xHF, that denote position and magnitude of the
stiffness reduction.
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The considered LF model is a projection-based reduced order model (ROM) of the
HF one, observe, e.g., [22–24], obtained by linearly combiningMLF �M proper orthog-
onal decomposition (POD) basis functions wk ∈ RM, k = 1, . . . ,MLF, as dLF(t, xLF) ≈
Wr(t, xLF), where W = [w1, . . . , wMLF

] ∈ RM×MLF is the projection matrix and r(t, xLF) ∈
RMLF are the unknown POD coefficients. The following MLF-dimensional ROM is so
obtained:

Mr r̈(t) + Krr(t) = fr(t, xLF) , (3)

wherein the damping effects are disregarded, and:

Mr ≡ W>MHFW , Kr ≡ W>KLFW , fr(t, xLF) ≡ W>fHF(t, xLF) , (4)

with the projection matrix W obtained with the so-called method of snapshots.
To set the entries of DLF and DHF, xLF and xHF are assumed to be uniformly distributed

within their input spaces. The instances are generated by sampling xLF and xHF via latin
hypercube rule and picking up the measurables from the system state vectors through
appropriate Boolean operations.

Moving on to the deep learning stage of the procedure, the MF-DNN surrogateNN MF

is composed as well of the LF and HF parts, respectively termedNN LF andNN HF. NN LF

is a fully-connected DNN used to mimic the vibration recordings for any given LF input
data xLF, according to:

ÛLF(xLF) = vec−1
Nu×L[Y(

1
ω
�NN LF(xLF))] , NN LF(xLF) = ω� ĥ(xLF) , (5)

where: vec : Rm×n → Rmn denotes the vectorization operation, and vec−1
m×n : Rmn →

Rm×n is its inverse; Y = [y1, . . . , yLLF ] ∈ RLconcat×LLF , with Lconcat = LNu, is a matrix of
LLF � Lconcat POD basis functions used to reduce the number of trainable parameters of
NNLF; RLLF 3 h(xLF) = [h1(xLF), . . . , hLLF(x

LF)] = Y>vec[ULF] are the POD coefficients; �
is the Hadamard product; ω ∈ RLLF is a vector used to weight the relative importance of
the POD basis functions.

NN LF is a 9-layers fully-connected DNN with residual connections. All layers feature
30 neurons, except the last two that are equipped with 2LLF and LLF neurons, respectively.
A couple of double-layer identity residual connections [25] are also exploited, to perform
an iterative refinement of the outcome. No activation is used for the last layer, while the
PReLU [26] one is employed elsewhere. During training, the weights ΩLF are tuned by
minimizing the following loss function:

LLF(ΩLF, DLF) =
1

ILF

ILF

∑
i=1

1
LLF
‖ω� (Y>vec[ULF

i ])−NN LF(xLFi )‖2
2 + λLF‖ΩLF‖2

2 , (6)

where λLF plays the role of a regularization parameter. The loss function is minimized
using the Adam algorithm for a maximum of 10, 000 allowed epochs. The learning rate ηLF
is initially set to 0.005, and decreased for 4/5 of the allowed training steps using a cosine
decay schedule with weight decay equal to 0.02. An early-stopping strategy is used to
interrupt the learning process, whenever overfitting shows up.

NN HF is instead built upon the LSTM scheme, that is used to mimic the time cor-
relation between the two fidelity levels. Recurrent neural networks (RNNs), such as the
adopted LSTM one, can handle the sequences of the inputs of variable length thanks to a
hidden state variable that acts as a data memory. As RNNs can fail in addressing long-term
dependencies due to the vanishing/exploding gradients issue arising during the back
propagation through time [27], the LSTM cell model [28] can better capture long-term
dependencies by means of an internal gating mechanism [27]. The NN HF consists of four
LSTM layers, with cell states of size 16, 16, 32, Nu, and of a time distributed fully-connected
output layer with Nu neurons. No activation is applied to the dense layer, while the LSTM
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layers have standard cells with sigmoidal gating functions and hyperbolic tangent activated
states. The weights ΩHF are tuned by minimizing the following loss function:

LHF(ΩHF, DHF) =
1

IHF
1

NC

IHF

∑
j=1

NC

∑
τ=1

1
Nu

1
LC
‖vec[UHF

j,τ:τ+LC−

NN HF(xHFj , ÛLF
τ:τ+LC(x

LF(xHFj )), tτ:τ+LC)]‖1 + λHF‖ΩHF‖2
2 .

(7)

The optimization is carried out by using the Adam algorithm again. The learning rate
is decreased as the training advances using a cosine decay schedule, and an early stopping
strategy is adopted to prevent overfitting issues.

3. Results

To assess the performance of the proposed MF-DNN surrogate model, the cantilever
beam depicted in Figure 1 is considered. The structure is made of two arms having a
length of 4 m, a width of 0.3 m and a height of 0.4 m. The structure is assumed to be made
of concrete, with mechanical properties: Young’s modulus E = 30 GPa, Poisson’s ratio
ν = 0.2, density ρ = 2500 kg/m3. The structure is excited by a distributed vertical load
q(t), acting on an area of (0.3× 0.3) m2 close to the beam tip and varying according to
q(t) = Q sin (2π f t), with Q ∈ [1, 5] kPa and f ∈ [10, 60] Hz being the load amplitude and
frequency. We assume that f and Q are uniformly distributed in their ranges.

Displacement time histories ULF(xLF) = [uLF
1 , . . . , uLF

Nu
] and UHF(xHF) = [uHF

1 , . . . , uHF
Nu
]

are recorded from Nu = 8 sensors placed along the bottom surface of the structure. The
recordings are provided for the time interval (0, T = 1 s) with a 200 Hz sampling rate. The
HF numerical model is obtained from a finite element discretization using linear tetrahedral
elements and resulting inM = 4659 dofs. Damage is simulated via a 25% reduction of
the material stiffness within a subdomain Ωy, whose size is (0.3 × 0.3 × 0.4) m3, and
whose position is parametrized by the coordinates of its center of mass y = (xΩ, yΩ),
with xΩ, yΩ ∈ [0.15, 3.85] m. The ROM is obtained by prescribing a high accuracy, so that
its order is set to MLF = 14, leading to a speed-up in the analyses of about 25.8 times.
ILF = 10, 000 LF instances are collected to train NN LF, while only IHF = 1000 additional
HF instances are exploited to train NN HF.

Figure 1. Cantilever beam: geometry, loading condition, damaged area Ωy, and synthetic recordings
related to displacements u1(t), . . . , u8(t).

To show the capabilities of the surrogate model to match the ground truth solution,
some exemplary signals provided by NN MF are reported in Figure 2, together with the
corresponding LF approximations and target signals, at varying input parameters. It can
be observed that the NN MF model always match very well the target signal, in relation
to both the low and high frequency components. Though not shown, preventing NN HF

from exploiting the correlation between HF and LF recordings spoils the approximation
capabilities of NN MF, as NN LF seems to play a crucial role in helping NN HF to maintain
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correct solutions in time. Intuitively, this loss of accuracy is due to the fact that, if NN LF is
removed, NN HF needs to learn not only how to enrich the LF signals with the effects of
damage and structural damping but to reproduce the entire input–output behavior.

10-5 10-4 10-4

10-6 10-5 10-5

Figure 2. Cantilever beam: exemplary comparisons of u1(t), u4(t) and u8(t) displacement time
histories provided by NN LF and NN HF, with the target signals.

4. Conclusions

In this work, we have proposed a strategy to build MF surrogate models for structural
health monitoring in a non-intrusive way, exploiting DNNs. The framework allows to map
damage and operational parameters onto recordings linked to the structural response to
the external loading. The modeling scheme is based on a two-level architecture, charac-
terized by the relevant DNNs to be trained separately: a fully-connected model is used
to mimic sensor recordings in the undamaged state; a long short-term memory model
is used to enrich the approximation with the effect of damage. The effects of damage
are accounted for without the need of model order reduction techniques, prone to losing
damage-sensitive components.

The strategy has been tested against a cantilever beam, and the results have demon-
strated that a (structure-independent) remarkable accuracy can be obtained. Though not
shown, it has also outperformed the single-fidelity counterpart in mimicking the struc-
tural response. The computing time to obtain results from the surrogate model has been
demonstrated to be up to three orders of magnitude smaller than that corresponding to the
full-order model.

In future activities, the capability of the strategy will be assessed while feeding MCMC
algorithms empowered by a Siamese DNN, allowing for measurement noise and varying
operational conditions. Some preliminary results have demonstrated that learnable features
used in place of the raw vibration recordings would enable improvements in the parameter
identification outcomes, especially in terms of damage detection and localization.
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