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Abstract: Brain cancer is one of the most dangerous cancer types in the world, and thousands of
people are suffering from malignant brain tumors. Depending on the level of cancer, early diagnosis
can be a lifesaver. However, thousands of scans must be studied in order to classify tumor types
with high accuracy. Deep learning models can handle that amount of data, and they can present
results with high accuracy. It is already known that deep learning models can give different results
depending on the dataset. In this paper, the effectiveness of some of the deep learning models on two
different publicly available MRI (Magnetic Resonance Imaging) brain tumor datasets is examined.
The reason for choosing this topic is that we are trying to find the best solution to classify tumors
in the datasets. Different deep learning models are used separately on preprocessed datasets with
the Contrast Limited Adaptive Histogram Equalization (CLAHE) preprocessing variable to extract
features from images and classify them. Datasets are shuffled randomly for 80% training, 10%
validation, and 10% testing. For fine-tuning, models are modified so that the output channel of
the classifier is equal to the number of classes in the datasets. The results show that pre-trained
and fine-tuned ResNet, RegNet, and Vision Transformer (ViT) deep learning models can achieve
accuracies higher than 90% and that they can be used as classifiers when diagnosis is required.

Keywords: brain tumors; classification; deep learning; transfer learning

1. Introduction

The brain is the most complex organ in vertebrates, and it is located in the center of
the nervous system [1]. Tumor types in the brain can be mainly classified as benign and
malignant tumors. Additionally, brain tumors can be classified as primary and secondary.
Tumors that start to grow in the tissue of the brain are named primary brain tumors, and if
neoplasm has grown in another organ and then affected the brain, the corresponding type
of tumor is called a secondary brain tumor [2]. The most common primary brain tumors
are meningiomas (referred as meningioma tumor), pituitary adenomas (referred as pitu-
itary tumor), and astroglial neoplasms (including glioblastoma and referred to as glioma
tumor) [3]. Treatments are dependent on the patient, but common treatment techniques for
primary brain tumors are multimodality treatments, radiation, and chemotherapy [4].

Although there are many types of benign and malignant tumors, the most common
ones are meningioma, glioma, and pituitary ones. Meningioma tumors form in the thin
layers of tissue that cover the spinal cord and brain [5]. Gliomas are tumors that are thought
to derive from neuroglial stem or progenitor cells [6]. They comprise 80% of all malignant
brain tumors [7]. Pituitary adenomas are tumors of the anterior pituitary, and most of them
are benign and slow-growing [8].
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In this study, a classification of MR images into four different tumor classes, one
normal and three different abnormal brain tumor classes, was carried out. Meningioma,
glioma, and pituitary are the abnormal classes.

2. Related Works

There are many studies that have been conducted on brain tumor images with deep
learning models in the literature. Rajat et al. have obtained a 99.04% binary classification
accuracy with their pretrained AlexNet model on a public dataset obtained from The
Cancer Imaging Archive (TCIA). The F1-scores of their model for benign and malignant
tumors are 0.985075 and 0.992958, respectively [9]. Jianfeng et al. have obtained a 94.82%
accuracy and 89.52% precision on a multiclass malignant tumor classification of a randomly
divided CE-MRI dataset with the VGG19 (Visual Geometry Group) model [10]. Javed
et al. used the Inceptionresnet V2 model and acquired a 98.91% accuracy and 98.28%
precision. Their study on a publicly available Kaggle dataset consists of a malignant tumor
classification [11]. Arshia et al. studied a publicly available Figshare dataset that consists of
meningioma, pituitary, and glioma tumor classes. They obtained a 98.69% test accuracy
with a fine-tune VGG16 model, data augmentation, and SGDM (stochastic gradient descent
with momentum) optimizer [12]. In another study, Mohamed et al. used a custom dataset
that has 155 tumor and 98 non-tumor brain images. They augmented the dataset to 1516
images and acquired the best accuracy of 98.24% with MobileNetV2 [13].

In the literature, one can see that to classify MR brain tumor images obtained from
different hospitals, ResNet50, VGG16, and Inception v3 deep learning models are mainly
used. In this study, classification processes were done with three different deep learning
models and a preprocessing variable on open-access randomly distributed train, validation,
and test datasets, which are different from the literature.

3. Materials and Methods

Two different datasets, which are available in open access on the Kaggle platform, are
used for the multiclass classification of MR brain images [14,15]. The classes, percentages,
and quantities of datasets can be seen in the Tables 1 and 2 below.

Table 1. Information about DS-1 (Dataset-1) [14].

Classes Train Split Validation Split Test Split Total

Normal 328 28 40 396

Meningioma 733 98 106 937

Glioma 752 95 79 926

Pituitary 715 95 91 901

Total 2528 (80%) 316 (10%) 316 (10%) 3160

Table 2. Information about DS-2 (Dataset-2) [15].

Classes Train Split Validation Split Test Split Total

Normal 1587 215 198 2000

Meningioma 1297 174 174 1645

Glioma 1334 143 144 1621

Pituitary 1401 170 186 1757

Total 5619 (80%) 702 (10%) 702 (10%) 7023

In this study, ResNet50, RegNetY_16GF, and VisionTransformer_L_16 deep learning
based models have been used for the classification process. All information about models
and customizations is given below.
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ResNet50 was used as the first model in this study. Residual Networks can be used as
image classifiers. The architecture consists of sequential layers, and these layers contain
bottleneck blocks [16]. In the Torchvision Library, the bottleneck blocks assigned the
downsampling strides to the second 3 × 3 convolution, whereas the original paper assigned
it to the first 1 × 1 convolution [17]. The last fully connected (FC) layer originally worked
to classify images into 1000 categories, but datasets have 4 categories (normal, meningioma,
glioma, and pituitary). Therefore, the last FC layer’s output features are customized to the
number of classes.

RegNetY_16GF was used as the second model in this study. RegNet is a product of
design spaces [18]. All RegNet models have stem, layer, and head blocks. These blocks can
be customized with parameters. The stem layer is a Convolution + Batch Normalization
+ ReLU block. For this layer, the stride and filter size are 2 and 3, respectively. The layer
block consists of chains of residual blocks. Residual blocks contain bottleneck blocks as in
ResNet, but the RegNetY model has a squeeze and excitation attention module. Finally,
the head block contains an AveragePool2D and FC layer. Similarly, output features are
customized to the number of classes.

VisionTransformer_L_16 (ViT) was used as the third and last model. ViT uses a
different deep learning method called transformer [19]. Encoders are the main blocks, and
they have multiple layers. Each block consists of three elements: Layer Norm, Multi-head
Attention, and Multi-Layer Perceptrons. Like the other two models, the head of the model
was customized to the output features, equal to the number of classes.

In the training part, datasets are fed into models, where preprocessing is variable.
Figure 1 shows the major processes of the training part.
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Figure 1. Training diagram of the models.

For training and testing, Pytorch implementations of models are used. Training is
partially done by HPC sources. Information about hardware can be seen in Table 3.

Table 3. Information about hardware.

CPU GPU Memory OS

Intel Xeon Scalable Gold 6148
(20 cores used)

2 X Nvidia Tesla
V100 16 GB 170 GB CentOS 7.3

The Contrast Limited Adaptive Histogram Equalization (CLAHE) preprocess has been
applied to RGB images by converting the color format from BGR (blue green red) to LAB
and then applying CLAHE on the L channel with a custom clip limit and tile grid size. An
example of the CLAHE process can be seen in Figure 2.
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4. Results

The obtained results are presented in the tables below. In Table 4, one can see that the
highest accuracy on DS-1 has been acquired with the RegNet model with preprocessing. In
Table 5, one can see that both VisionTransformer (ViT) and ResNet models have acquired
the same accuracy, and preprocessing has not been applied to DS-1. Similarly, Table 6
shows that the best accuracy has been acquired with ResNet and RegNet models on DS-2
with preprocessing. Lastly, Table 7 shows that ResNet 50 has the best accuracy on DS-2
without preprocessing.

Table 4. Results for various models on DS-1 with CLAHE preprocess.

Model Accuracy Precision Recall F1 Score

ResNet50 0.94937 0.94 0.94 0.94

RegNetY_16GF 0.96519 0.96 0.96 0.96

VisionTransformer_L_16 0.9557 0.95 0.95 0.95

Table 5. Results for various models on DS-1 without CLAHE preprocess.

Model Accuracy Precision Recall F1 Score

ResNet50 0.95253 0.95 0.94 0.95

RegNetY_16GF 0.93354 0.93 0.93 0.93

VisionTransformer_L_16 0.95253 0.95 0.94 0.95

Table 6. Results for various models on DS-2 with CLAHE preprocess.

Model Accuracy Precision Recall F1 Score

ResNet50 0.99288 0.99 0.99 0.99

RegNetY_16GF 0.99288 0.99 0.99 0.99

VisionTransformer_L_16 0.9886 0.99 0.99 0.99

Table 7. Results for various models on DS-2 without CLAHE preprocess.

Model Accuracy Precision Recall F1 Score

ResNet50 0.9943 0.99 0.99 0.99

RegNetY_16GF 0.99145 0.99 0.99 0.99

VisionTransformer_L_16 0.99003 0.99 0.99 0.99

5. Conclusions and Future Work

Within the scope of this work, MR brain images are classified with various deep learn-
ing models, and it is observed that the Contrast Limited Adaptive Histogram Equalization
(CLAHE) preprocess has positive effects on some of the models and datasets. Classification
results are highly dependent on the used dataset and deep learning model. As a result of the
multiclass classification study, the highest accuracy and recall on DS-1 have been 96.519%
and 96%, respectively, and these results have been achieved with the RegNetY_16GF model.
For DS-2, the best model has been ResNet50. Furthermore, the accuracy and recall have
been 99.43% and 99%, respectively. The best results on DS-1 have been achieved with the
CLAHE preprocess. In contrast, the CLAHE did not improve results on DS-2.

In future work, a hybrid system can be developed to assist physicists who are working
in this field. Machine learning (ML) algorithms can be an addition to deep learning models
in this system.
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