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Abstract: In this paper, surface acoustic wave (SAW) technology based on love waves was designed
in three dimensions for finite element modelling (FEM) and analysis in order to detect volatile organic
compounds (VOC). A thin layer of polyisobutylene (PIB), which acted as the sensing layer, was
placed on top of the guiding layer of SiO2 and interdigitated electrodes (IDE), which were modelled
on a piezoelectric substrate. The substrate selected was 64◦ YZ-cut Lithium niobate (LiNbO3) for
love wave generation, and the lightweight electrodes were made of Aluminium (Al). Analytical
simulations were conducted using COMSOL Multiphysics 6.0 software.
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1. Introduction

Dichloromethane (DCM), or methyl chloride, is a volatile organic compound (VOC)
infamous for its carcinogenic properties. The gas, which is mainly used in industrial
solvents, is found to cause lung and liver cancers in animal experiments, whereas it is
proven to cause cancers of the brain, liver, and a few types of blood cancers, including
Non-Hodgkin’s lymphoma in humans [1]. Among the various techniques available today
for the detection of gases in atmospheric air, SAW (surface acoustic wave) sensors are highly
accurate. SAW offers higher sensitivity, simplicity of fabrication, rapid response time, room
temperature operation, and the possibility of wireless operation at low costs [2]. The sensor
consists of an input inter digitated electrodes (IDE) that transforms electrical signal to
waves of surface acoustic wave nature and an IDE device at the output that converts the
waves back to electrical output signals, both are lithographically etched on a piezo electric
substrate. These IDEs are made of Aluminium (Al). The schematic diagram is shown in
Figure 1.
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2. Design Methodology

The interface of two solid elastic substrate layers, one of which is quite thick and the
other of which is a thin layer on top of the thick layer, is where the love waves are produced.
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When love waves are generated, very high acoustic energies are centred in the thin guiding
layer [3].

The wavelength of designed frequency λ can be calculated by following equation:

λ = vR/ f0 (1)

where vR is acoustic velocity in Lithium niobate substrate and f0 is the designed SAW
center frequency. The total concentration of gas, c, in air is calculated by:

c = (c0•P)/RT (2)

where c is in moles/m3 and c0, P, R, and T are concentration in parts per million (ppm),
atmospheric pressure, gas constant and temperature, respectively.

ρgas/PIB = K•M_DCM (3)

K is the gas’ air/PIB partition coefficient, and M is the molar mass of DCM. Equation
(2) represents the density of gas absorbed by the PIB film.

ρtotal = ρPIB + ρgas/PIB (4)

Equation (3) provides the total density of PIB film, which is equal to the addition of
the density of PIB film and is the partial density of gas in air [4–6].

The parameters for the DCM gas are shown Table 1.

Table 1. DCM parameters.

Description Value

DCM concentration in air (mol/m3) 0.040874
Molar mass of DCM (kg/mol) 0.08493

PIB/air partition constant for DCM 30.346
Mass concentration of DCM in PIB (kg/m3) 0.10534

The equivalent circuit, as shown in Figure 2, contains two loss resistors and a storing
element of capacitor and inductor. R0 is parasitic resistance of the Lithium niobate substrate.
C0 is a static capacitance. Cm, Rm, and Lm represent motional resistor, inductors, and
capacitance. Where fs is the resonance frequency, fp is the anti-resonance frequency and
Qs and Qp are corresponding quality factors [7,8]. The value of the equivalent circuit
component can be obtained from the following equations.

Cm = C0

((
fp

fs

)2

− 1

)
(5)

Lm =
1

(2π fs)
2Cm

(6)

Rm =
1

Qs

√
Lm

Cm
(7)

R0 =
1(

2π fpC0Qp
) (8)
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Figure 2. Equivalent circuit of SAW resonator.

3. Results and Discussion

The device 3D geometry is shown in Figure 3a. The SAW device’s central frequency is
set to 1GHz. The PIB sensing layer thickness and guiding layer thickness were optimized
with respect to λ, and quality factor values were recorded. When the SAW gas sensor was
subjected up to 1000 ppm of gas in the air, the resonance frequency decreased due to the
mass loading impact on the sensor layer. Figure 3b shows the von mises stress (surface
deformation plots) at 1000 ppm of DCM. The results ensured the production of love waves
on the surface of LiNbO3.
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Figure 3. (a) Meshed 3D model of the proposed design, (b) Surface deformation.

The resonance and anti-resonance frequencies ( fs & fp) were found to be 1.036 GHz
and 1.038 GHz, respectively, as shown in Figure 4. The lowest SAW mode was split into
two Eigen solutions by the IDE and PIB film. The resonant mode frequency or the lowest
frequency is where waves interfere constructively during propagation. The other represents
the anti-resonance frequency at which waves interfere destructively. These two frequencies
are the boundaries of the stop band and do not support wave propagation.
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The frequency shift of the sensor from 0 to 1000 ppm dichloromethane gas concentra-
tion varies linearly with PIB thickness. These results guarantee the stability of the love wave
gas sensor for various gas concentrations (0 to 1000 ppm). The adsorbed DCM increases the
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PIB mass density and lowers the phase velocity and consequently the operating frequency,
which can be associated with the concentration of investigated gas. Figure 5a depicts the
dependency of the resonance frequency shift on the concentration of the DCM gas. The
frequency shift ∆ f of the device can be calculated as ∆ f = f − f0, where f and f0 are the
resonance frequencies after the corresponding value and before the exposure to the gas,
respectively (i.e., a negative value) [9].
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Figure 5a shows the frequency shift against the gas concentration with the sensitivity
of 49 Hz/ppm for dichloromethane (DCM) gas.

The equivalent circuit is extracted form the COMSOL and the parameter of the circuit
is shown in Table 2. It shows the effect of DCM gas sensing on the circuit parameter. The
circuit component of motional resistance (Rm) decreases, whereas the parasitic resistance
(R0) increases after the DCM gas exposure to the SAW. Figure 5b shows equivalent circuit
simulation using the Quite Universal Circuit Simulator. The S11 of the simulation results
showed the 0 ppm concentrations around 1036 MHz with −0.07 dB attenuation. Similiarly
the insertion loss parameters were obatained with the S21 spectrum (Figure 5b).

Table 2. Equivalent circuit components.

Circuit Parameters When DCM = 0 ppm When DCM = 1000 ppm

Cm ( f F) 3.13 × 10−2 3.12 × 10−2

Lm (mH) 7.54 7.55
Rm (KΩ) 10.739 5.690
R0 (Ω) 18.8 8.00

C0 ( f F) 1.625 1.62

4. Conclusions

Using COMSOL Multiphysics 6.0 [9], the simulations of LiNbO3-based SAW devices
have been performed in the present work. The essential data required for the design of a
SAW device, such as the type of SAW, its resonance frequencies, and its quality factor, have
been extracted. The device was discovered to support love wave mode with a resonance
frequency of 1.036 GHz. The linear shift of the carrier concentration provides the gas
sensor’s stability from 0 to 1000 ppm concentration. The change in S parameter values
gave the quantity of DCM gas adsorbed on the PIB sensing layer. The proposed simulation
model can be used for further SAW device research and development based on LiNbO3.
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