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Abstract: Implementing “first-time-right” production processes increases a production line’s sustain-
ability and minimizes rejects. Multi-camera systems are a key element since they can quickly detect
defects without contact. However, it is still a time-consuming challenge to determine the correct
number and position of cameras to achieve gapless surface monitoring of complex components.
This proposal aims to develop a new software tool that automatically calculates and visualizes
surface coverage by using bipolar plates as an example. With this method, 100% surface coverage
inspections become feasible, and the cost of commissioning multi-camera inspection systems can be
significantly decreased.

Keywords: fuel cell; quality control; simulation; visual inspection; computer aided design

1. Introduction

Currently, quality inspection takes place in many industries and is mainly performed
manually by trained employees [1]. However, this process is time-consuming and rep-
resents a potential “bottleneck” in the production line. To ensure this does not have a
negative impact on production speed, 100% inspections of complex components are either
not carried out or are only done on partial quantities. The inspection of all components
would require more employees, which is time-consuming and costly. To overcome this,
so-called inline-capable multi-camera inspection systems are used [2]. One disadvantage
of such systems is that they are often not available as standard solutions, and therefore
customer-specific solutions have to be developed [3]. The challenge here is to determine
suitable sensor placement (usually camera placement) that covers the entire surface to be
monitored without gaps. For static (non-moving) parts, various methods already exist
for automatic planning camera placement and optimization of surface coverage [3–6]. An
overview of the different methods is presented in [7].

In practice, static solutions are only applicable to a limited extent since multi-camera
inspection systems are mainly used in the quality assurance of moving parts to meet the
high production rates. In the static approach, one camera is responsible for only one area
of the part being inspected, while in the dynamic approach, one camera is responsible
for multiple areas (as the part moves along the conveyor belt, multiple images are cap-
tured). The development of such complex multi-camera systems is either based on expert
knowledge or an iterative trial-and-error process [8]. A particular challenge here is the
non-trivial manual calculation of the entire surface coverage. In addition, each time the
camera position is changed, the calculations must be performed again. With a large number
of cameras and a complex surface geometry, this process can take several weeks or even
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months. Errors that occur during the design phase and persist until the deployment phase,
can lead to time-consuming commissioning and significant delays in the ramp-up phase.
The simulation of the surface coverage using 3D CAD data could ease this process. The
scope of this paper is the development of a software tool for simulating the surface cover-
age of multi-camera inspection systems for dynamic (moving) parts using their 3D CAD
data. By using the software tool, design errors can be identified and eliminated at an early
stage. Thin formed bipolar plates (BPP) with fine structures, which are to be used in novel
polymer electrolyte membrane electrolyzers (PEM-EL), serve as an application example.

2. Surface Coverage Simulation

When calculating the surface coverage, each point of the surface is assigned a value
between zero and one. Two different grading functions exist for the evaluation of surface
coverage, which are shown in Figure 1 [9]. In a bivalent function (Figure 1a), only two
values are considered, namely one (covered) and zero (not covered). In contrast, the real-
valued function (Figure 1b) assigns a real value to each point. This allows prioritizing
specific points within the coverage area.
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To calculate and simulate the surface coverage of multi-camera systems, it is necessary
to define the camera, environment, and task model [10]. A pinhole camera is used as the
camera model, in which the points are projected through the optical center onto the image
plane [11]. The camera model is described by intrinsic (internal camera specific parameters
like focal length) and extrinsic parameters (like position and orientation) [11,12]. In the
developed software tool, the environment model consists of a 3D mesh of triangles. Finally,
a task model must be defined to consider certain requirements of the image processing
algorithms for surface coverage. The following aspects are crucial: field of view, focus,
resolution, and view angle of the camera as well as occlusion.

The field of view determines which points are captured by the camera and which are
not. Therefore, the camera field of view is modeled as a bivalent function V : R→ {0, 1}
and can be calculated using the four direction vectors

→
d1,

→
d2,

→
d3 and

→
d4 (Figure 2a). The

four direction vectors
→
d1–
→
d4 are computed using the intrinsic camera parameters and the

direction vector
→
d . Pairwise, the direction vectors span four planes. All points located

within the four planes are captured by the camera. A detailed calculation is shown in [13].
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In order for an object to be focused and displayed sharply, it must be located in the
depth-of-field range of the camera. Resolution will not be considered further, since an
increase in resolution is meaningless if the object is out-of-focus. To calculate the focus, two
planes must be determined: the near and far planes (Figure 2b). Based on the distance of the
object and the intrinsic camera parameters, two constants (near and f ar) can be calculated,
which correspond to the distance between the camera and the two planes [10,14]. Assuming
that an optimal focus lies in the middle of the two planes, the optimal opt is defined as the
average of near and far. The focus is calculated using the function F : R→ {0, 1} , which is
defined as:

F(z) =


∣∣∣ z− near

opt− near

∣∣∣, if near < |z− cz| ≤ opt∣∣∣ f ar−z
f ar−opt

∣∣∣, if opt < |z− cz| < f ar
0, otherwise

(1)

where Cz is the z-coordinate of the camera position Cp
(
Cx, Cy, Cz

)
.

Another important aspect of surface coverage is the view angle of the camera. This is
considered optimal when the optical axis of the camera is orthogonal to the surface. The
calculation of the view angle δ is shown in Figure 3. For this purpose, the angle between
the surface normal

→
n from the point P and the vector

→
a connecting P and the optical center

of the camera are determined [10]. Like the focus, the view angle is defined as a real-valued
function A : R→ {0, 1} .
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Occlusion computes whether the surface that is going to be covered is obscured or not.
Like the camera field of view, occlusion is defined as a bivalent function O : R→ {0, 1} .
Point P is occluded, if and only if the segment between the optical center of the camera and
P intersects a surface [10].
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The evaluation of the surface coverage considering all the presented aspects is per-
formed with the function C : R→ {0, 1} , defined as:

C(z) = V(z) · F(z) · A(z) ·O(z) (2)

3. Results and Discussion

In this section, the results of the surface coverage simulation are presented. For visu-
alization purposes the output of the evaluation function C was converted to color values.
See Table 1.

Table 1. Conversion of the output values to color values and their meaning.

Output Value 1 0 0.5 1

Color value Red Yellow Green

Meaning Insufficient or
uncovered area

Covered area under
non-optimal viewing
angle and/or focus

Optimal covered area

1 The intermediate output values are interpolated between the colors red—yellow and yellow—green.

To better understand the influence of the view angle and focus as a function of tilt
angle and camera distance to the object surface, Figure 4 illustrates examples of different
camera configurations on a flat surface. The first row shows the influence of the view
angle. The second row demonstrates the influence of focus, and the last row combines both
factors and shows their impact on surface coverage. Furthermore, surface coverages for
four different camera tilt angles (45◦, 60◦, 75◦, and 90◦) have been considered in each series.
Figure 4a shows the results for a camera distance of 200 mm and Figure 4b of 160 mm. It
can be seen from Figure 4 (first row) that the view angle depends only on the tilt angle
and not on the distance. In contrast to the view angle, the focus depends on both the tilt
angle and the distance. Changing the tilt angle also affects the distance of certain areas
of the field of view from the camera’s optical center (Figure 4—second row). This effect
is clearly visible, especially in the second row of Figure 4a, for the tilt angles 45◦ and 60◦.
The combination of view angle and focus results in a degradation of the surface coverage.
Figure 4b demonstrates the negative influence of an out-of-focus working distance between
camera and object, and clearly shows the importance of this parameter for the design of
multi-camera systems. Optimal coverage is achieved at a tilt angle of 90◦ and a distance of
200 mm.
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The implementation of a surface coverage simulation with the developed software
tool is performed using a 3D CAD model. In this paper, a prototype 3D CAD model of a
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BPP for a PEM-EL was used (see Figure 5). The BPP handles the mechanical and electrical
interconnection of adjacent single cells. The metallic multi-part assembly consists primarily
of two materially joined half plates, the anode, and the cathode. Both half plates have
channel structures and contact surfaces. Two different camera configurations were tested
to investigate the BPP (see Figure 6). The first configuration (Figure 6a) is a so-called
orthogonal model (camera tilt angle of 90◦). In the second configuration (Figure 6b), the
cameras are arranged in a “V”, briefly referred to as a V-model (camera tilt angle of 60◦).
A surface coverage simulation is performed in the developed software tool by passing the
BPP under the two camera configurations and calculating the surface coverage. The result
is shown at the bottom of Figure 6. In both configurations, the BPP is fully covered, but a
direct comparison shows that the V-model is more suitable for the inspection of BPP due
to the better coverage of the walls of the channel structures. The only disadvantage of
the V-model compared to the orthogonal model is that it requires twice as many cameras,
which in turn leads to doubled investment costs.
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Figure 6. Two different camera configurations and the result of their coverage simulation: (a) orthog-
onal model with a camera tilt angle of 90◦ and (b) V-model with a camera tilt angle of 60◦.

As shown, in the developed software tool, a position and/or orientation change of the
camera is implemented via the input of parameters, which enables a quick adjustment of
the configuration. In contrast, the manual configuration of the camera system, which is still
common in practice, involves fine-tuning each individual camera by hand. Adding further
cameras is also associated with high (mechanical) effort. To obtain a surface coverage, first
the part needs to be passed under the camera configuration to record all images. In the next
step, experts carry out a manual calculation and evaluation of the surface coverage for the
test configuration. Any camera adjustment results in the need to repeat this process. The
execution of several iteration loops significantly delays the commissioning. The solution
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presented here remedies this by making all adjustments visually available to the user in
real time.

4. Conclusions and Future Work

In summary, a software tool has been developed which allows the surface coverage of
moving parts to be evaluated for various camera configurations, using BPP as an example.
A user-friendly determination of the suitability of various camera configurations can be
achieved on the basis of a color scale. The dependence of central parameters, such as the
working distance, view angle, and tilt in connection with the focus, could also be shown.
Consequently, using the software tool, the commissioning time of multi-camera systems
can be significantly reduced by determining a suitable configuration for the desired level of
surface coverage. In addition, the tool increases the reliability of optical inspection systems,
as complete surface coverage can be verified during the design phase. The number of
undetected defects due to insufficient coverage can be significantly reduced.

A possible extension is the implementation of illumination and the calculation of
its influence on the surface analysis. Furthermore, there is development potential in the
automated determination of a minimum number of cameras including the camera position
in space for new unknown objects. After entering an individual coverage rate for specific
regions with the corresponding 3D CAD data, the system should calculate a suggestion
for a suitable configuration and propose it to the user. It is also conceivable to implement
interfaces to hardware manufacturers’ databases to provide an estimate of the investment
required for the created configurations. Future work will also include experimental data to
validate the efficiency of the presented approach.
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