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Abstract: In this paper, a full analysis of voltage vectors (VVs) in the DTC algorithm is presented. The
analytical analysis shows that the application of specific VVs results in false switching states called
uncontrollable angles (UCAs). A robust scheme that ensures the elimination of UCAs is proposed for
medium and high speeds with (18) subsectors (SSs). Simulation results are obtained and validated
using MATLAB/Simulink.

Keywords: adjustable speed drives; direct torque control (DTC); voltage source inverter; discrete
space vector modulation (SVM); lookup table (LUT)

1. Introduction

Direct torque control (DTC) is characterized by a fast dynamic response and structural
simplicity, and is much simpler than the FOC [1–3]. Several improvements have been made
to overcome problems associated with the DTC drive, particularly high torque ripple [4].
Reference [5] provided an in-depth study of the VV effect on the state variables issue over
the entire speed range in terms of UnAs. To select the appropriate VV, a new approach is
initially introduced by inserting the zero VV along with the selected one [6]. Research [7]
eliminated zero VVs during torque dynamics to establish a fast torque response in the
transient state. A modified LUT for the DTC of the three-level dual VSI fed open-ended
winding IM drive was proposed in [8], where the VV selection for lower hysteresis boundary
conditions was restructured with null voltages. Authors in [9] used the concept of virtual
vectors for a seven-phase IM where the torque ripple in different operation conditions was
investigated. Different ratios of dc-link voltage were used to drive a universal LUT that
was proposed for OW-PMSM. [10–12]. The proposed strategy effectively optimized the
duty ratio of fundamental VV to minimize the error between the reference VV and the final
VV imposed on motor terminals. A duty ratio regulator that considers the operating speed
impact on the torque deviation of the active voltage vectors was proposed in [11]. This
article suggests an enhanced, simple, and effective DTFRC strategy that aims to eliminate
the UnAs over the wide speed range. The proposed method, which uses (18) SSs for the
rotor at medium and high speeds, overcomes the conventional DTRFC with (six) sectors
in terms of the UnAs. Simulations and experimental results are presented to show and
compare the effectiveness of the proposed (18) SS scheme in the DTRFC algorithm of IM.
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2. Theoretical Background
2.1. Analytical Modeling

The basic principle of DTRFC is summed up in the instantaneous control of both
rotor flux and the torque using intermediate loops without current controls, and the two
components of the rotor flux vector of the rotor are estimated in the stator reference frame
(αs-βs), as in (1) and (2) [13].

Φs
rα =

Lr

Lm
(Φs

sα − σLsissα) (1)

Φs
rα(β) =

Lr

Lm
(Φs

sα(β) − σLsissα(β)) (2)

where Lm is the mutual inductance. Ls and Lr are the stator and rotor self-inductance,
respectively. σ is the leakage factor.

The rotor flux vector will be oriented according to α-coordinate axis. Thus, the
imaginary component of the rotor flux vector will be zero, i.e.,: Φrβ = 0, Φr = Φrα. The
derivatives of two controlled variables (Φr, Tem) are known in (3), (4) and (5) [5].

SΦr = kΦr(Φr_ref − Φr)− [
Lm

σLsτr
Re(Φs)− (

1
στr

)Φr] (3)

dSΦr

dt
= −dΦr

dt
(kΦr

− 1
στr

)− Lm

σLsτr
[Re(Vs − Rsis − jωsΦs)] (4)

dSTem

dt
= −dTem_est

dt
= (

1
στs

+
1
στr

)Tem −
pLm
σLsLr

Im[VsΦ∗
r − jωΦsΦ∗

r ] (5)

where kΦr is an optional positive constant. Depending on the previous equations, the block
diagram of the DTRFC algorithm can be constructed.

To enhance the performance at medium and high speeds, a transition will be facili-
tated between the conventional strategy with (6) sectors for the low-speed range, and the
improved strategy with (18) SSs (for medium and high speeds), as shown in Figure 1.
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Figure 1. Block diagram of the conventional DTC and improved strategies over wide speed range.

2.2. Determination of the UnAs Values for Low and High Speeds

Depending on Equations (2) and (3), the effect of applying Vi+1 and Vi−1 on dSΦr at
low speeds (20%ωn) and Vi+2 and Vi−2 at high speeds is analyzed. There are two UCAs at
low speeds and high speeds, each with a value of π/69 rad/s and π/94 rad/s, respectively.
In addition, an analytical study for the two VVs is performed, i.e, (Vi+1 and Vi+2), on dSTem
at high speeds. There are two UCAs, each of them with a value equal to π/13 rad/s (22%)
of the sector. Table 1 summarizes the values of the UnAs for each (dSΦr and dSTem) over
the entire speed range.
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Table 1. Values of UnAs over the entire speed for DTRFC scheme.

Change of Error Voltage Vector Low Speed
20% ωn(r/s)

High Speed
75% ωn(r/s)

UnAs
(Ratio of Sector)

dSΦr

Vi+1 or Vi+2
π
69 (rad) π

94 (rad) (3% to 4%) begin and end of sector
Vi−1 or Vi−2

π
69 (rad) π

94 (rad) (3% to 4%) begin and end of sector

dSTem

Vi+2 0 (rad) π
13 (rad) (22%) begin of sector

Vi+1 0 (rad) (22%) end of sector

2.3. The Improved Strategy (18) SS DTRFC Strategy for Medium–High Speeds

The proposed strategy is based on dividing the path of the rotor flux into (18) unequal
SSs. Every three subsequent sectors will repeat the same distance after the previous three
SSs. Depending on Equations (2) and (3), the position of the error change for the rotor flux
and torque for a high speed (75%ωn) is analyzed in order to devise the improved lookup
table. The LUT for the improved strategy is shown in Table 2.

Table 2. The LUT of the improved strategy for (18) SSs.

CΦr 0 1 0 1 CΦr 0 1 0 1

CTem 0 0 1 1 CTem 0 0 1 1
SS (1) V5 V6 V3 V2 SS (16) V4 V5 V2 V1
SS (2) V5 V1 V3 V3 SS (17) V5 V6 V2 V2
SS (3) V6 V1 V4 V3 SS (18) V5 V6 V3 V2

For the rest of the SSs, the applied vectors can be known by increasing the vector index
by (1) when moving between SSs, according to the following sequence:

• The first, fourth, seventh, tenth, thirteenth, and sixteenth SSs;
• The second, fifth, eighth, eleventh, fourteenth, and seventeenth SSs;
• The third, sixth, ninth, twelfth, fifteenth, and eighteenth SSs.

2.4. Determination of the Transition Speed ωT between the Traditional and the Proposed Strategy

It is important to determine the speed at which UnAs start to appear, i.e., the transition
speedωT. An increment is given to the angle θΦr so it scans the entire sector. The speed is
given a value starting from zero within an iterative loop during which the two components
(Vsα, Vsβ) are calculated. The derivatives (dSΦr and dSTem) are calculated according to the
two equations (2&3). The speed range at which UnAs disappears are within (0:55%ωn) or
(0:155 rad/s). However, if the speed exceeds (155/rad/s), UnAs start to appear.

3. Simulation Results and Discussion

By simulating the proposed block diagram, in the MATALB/Simulink environment,
for the motor with the parameters in the Appendix A (Table A1). The simulation results
are obtained in Figure 2. The speed of 180 rad/s which equals (63% ωn) is chosen as a
transition value between the conventional strategy and the improved one (18 SSs). The
transition to the improved strategy is allowed with a chosen high speed 195rad/s. at 3s. A
good regulation process around the reference values Φr-ref = 0.945 Wb, Tem-ref = 1.76 N.m
can be achieved. The transition speedωT = 155 rad/s is the minimum value that ensures
an absence of UnAs due to the correct selection of VVs, according to the improved LUT in
Table 2.
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4. Conclusions

This paper provides an analytical investigation of the DTRFC algorithm over the
en-tire speed range in terms of UnAs. The proposed scheme with (18) SSs is devised to
eliminate the UnAs of some VVs for medium and high speeds, yielding a correct torque
response. The transition speed value, at which the UnAs begin to appear, is precisely
analytically determined. Furthermore, the proposed method combines the advantages of
conventional and improved strategies to work over a wide speed range. The simulation
results validate the feasibility and effectiveness of the proposed scheme in IM drives over
the wide speed range.

Artificial network techniques for the transition state between the two algorithms
represent the main goal for future work.
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Appendix A

Table A1. Parameters of three-phase induction motor.

IM Parameters Values

Nominal voltage 230/400 V
Phase resistance stator Rs = 45.83 Ω
Phase resistance rotor Rr = 31 Ω

Phase inductance stator Ls = 1.24 H
Phase inductance rotor Lr = 1.11 H

Mutual inductance Lm = 1.05 H
Inertia J = 0.006 kg.m2

Friction factor f = 0.001 N.m.s/rad
Number of pole pairs p = 2
Nominal stator flux Φs = 1.14 Wb
Nominal rotor flux Φr = 0.945 Wb

Nominal power Pn = 0.25 kW
Nominal frequency F = 50 Hz

Nominal speed ωn = 282 rad/s
Nominal torque Tem = 1.76 N.m
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