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Abstract: The general design of the wheeled vibration-driven robot is developed in the SolidWorks
software (Dassault Systèmes SolidWorks Corporation, Premium 2022, Waltham, MA, USA) on the
basis of a double-mass semidefinite oscillatory system. The idea of implementing the vibro-impact
working regimes of the internal (disturbing) body is considered. The corresponding mathematical
model describing the robot motion conditions is derived using Euler-Lagrange equations. The
numerical modeling is carried out by solving the obtained system of differential equations with
the help of the Runge-Kutta methods in the Mathematica software (Wolfram Research, Inc., 13.0,
Champaign, IL, USA). The computer simulation of the robot motion is conducted in the MapleSim
(Waterloo Maple Inc., 2019.1., Waterloo, ON, Canada) and SolidWorks software under different robot
design parameters and friction conditions. The experimental prototype of the wheeled vibration-
driven robot is developed at the Vibroengineering Laboratory of Lviv Polytechnic National University.
The corresponding experimental investigations are carried out in order to verify the correctness of the
obtained results of the numerical modeling and computer simulation. All the results are presented in
the form of time dependencies of the robot’s basic kinematic characteristics: displacements, velocities,
accelerations of the wheeled platform and disturbing body. The influence of the impact gap value on
the average translational speed of the robot’s wheeled platform is studied, and the corresponding
recommendations for designers and researchers of similar robotic systems are stated. The prospective
directions of further investigations on the subject of the present paper and similar vibration-driven
locomotion systems are considered.

Keywords: semidefinite oscillatory system; working regimes; motion conditions; numerical
modeling; computer simulation; experimental investigations; kinematic characteristics

1. Introduction

Vibration-driven locomotion systems have gained significant interest among scientists
and engineers all over the world. These systems can be effectively used for performing
different operations in the mediums and environments where the use of other locomotion
systems is impossible or inefficient, e.g., for inspecting and cleaning pipelines, delivering
drugs or monitoring the inner surfaces of intestines or blood vessels, etc. The problems
of modeling the dynamics and kinematics of vibration-driven locomotion systems are
currently of significant interest among researchers all over the world. The dynamic behavior
of the vibration-driven capsule-type locomotion system with different types of constraints
is investigated in [1]. The motion conditions of the vibro-impact system sliding in the small
intestine under the controllable sinusoidal excitation are thoroughly studied in [2]. The
paper [3] is dedicated to the problems of optimizing the locomotion speed of the vibro-
impact capsule-type system with single-sided and double-sided constraints of the internal
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disturbing mass. In [4], the authors carried out numerical modeling and experimental
investigations on the contact conditions between the capsule-type system and the intestine.
Similar research on the friction conditions taking place during the capsule-type system
sliding inside the intestine is presented in [5].

The problems of optimizing the vibration-driven locomotion systems’ design and
control parameters are currently intensively studied. The technique of choosing the optimal
design and operational parameters of the capsule-type vibration-driven locomotion system
is considered in [6]. The thorough analysis of various friction types’ influence on the
kinematic and dynamic parameters of the capsule-type system is carried out in [7]. A
comparison of motion characteristics of the pure-vibration and vibro-impact systems
under different friction conditions is presented in [8]. The paper [9] is focused on various
algorithms allowing for optimizing the control and design parameters of the self-propelled
capsule in order to improve the possibilities of its bidirectional motion. In [10], the authors
investigated the dynamics of the vibro-impact system sliding along the inclined track under
various excitation and friction conditions. The novel optimization method of maximizing
the locomotion speed of the self-propelled capsule-type robot moving in an uncertain
frictional environment is presented in [11].

One of the common fields of vibro-impact locomotion systems’ implementation is
pipeline inspection and cleaning. Thorough reviews of various types of in-pipe robots
and the basic prospects of their development are presented in [12,13]. The novel design
of the wheeled screw-type robot is proposed in [14]. In [15], the authors improved the
wheeled in-pipe robot of the wall-pressing type, and analyzed the robot’s capability of
overcoming obstacles. The paper [16] is dedicated to the semi-automatic pipeline inspecting
and cleaning system consisting of two movable sections and three driving crank-type
mechanisms. In [17], the double-mass vibro-impact in-pipe robot equipped with non-
circular driving gear transmission is investigated.

Among the great variety of vibration-driven locomotion systems and vibratory robots,
the wheeled ones are the most widespread. The unidirectionally moving wheeled robot
driven by the inertial vibration exciter with the rotating unbalanced mass is studied in [18].
The dynamic behavior of the same vibratory robot is numerically modeled in [19]. The
present paper is based on the previous investigations of its authors presented in [20–22].
The initial idea of developing the wheeled vibro-impact robot has been proposed and
theoretically investigated in [20]. The 3D model of the robot and the computer simulation
of its motion have been presented in [21]. The basic experimental study of robot kinematic
parameters is performed in [22]. The major purpose of the present research consists in ex-
perimental substantiating the impact gap value, providing the robot’s maximal locomotion
speed. Based on the obtained results, the corresponding recommendations for designers
and researchers of similar robotic systems can be drawn.

2. Materials and Methods
2.1. Simplified Kinematic Diagram and Mathematical Model of the Robot

The double-mass vibro-impact system of the wheeled robot is presented in Figure 1.
The crank AB rotates around the hinge A at a constant angular velocity ω. The connecting
rod DC is joined with the crank AB and pushes (pulls) the slider C. The latter is connected
with the stiffness spring k1, actuating the impact body of the mass m2. The maximal relative
displacement of the impact body is restricted by the impact plate and stiffness spring k2.
The robot’s body of mass m1 is assembled on the wheeled chassis. Using the overrunning
(free-wheel) clutches, the unidirectional rotation of the wheels is provided. In order to
study the robot locomotion, the inertial coordinate system xOy and the corresponding
generalized coordinate x1 are applied. The relative motion of the impact mass along the
robot’s body is described by the coordinate x2.
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Using Euler–Lagrange equations, the simplified mathematical model describing the
robot locomotion can be written as follows:

(m1 + m2)
..
x1 + (xC − x2)k1 + (δ0 − x2)k∗2 = Fbr, (1)

m2
..
x2 + (x2 − xC)k1 + (x2 − δ0)k∗2 = 0, (2)

where

xC = lAB cos(ωt) +
√

l2
BC − (lAB sin(ωt))2 − lAB − lBC ≈

lBC�lAB
lAB(cos(ωt)− 1), (3)

k∗2 =

{
k2, x2 ≥ δ0,
0, x2 < δ0,

(4)

Fbr =

{
0, sign

( .
x1
)
≥ 0,

(xC − x2)k1 + (δ0 − x2)k∗2, sign
( .
x1
)
< 0,

(5)

lAB, lBC are the lengths of the rods AB, BC, respectively; δ0 is the initial impact gap (the
smallest distance between the impact mass m2 and the impact plate when the crank is in a
state of rest and takes a horizontal position).

The numerical modeling is carried out by solving the derived system of differential
equations with the help of the Runge-Kutta methods in the Mathematica software.

2.2. Simulation Models of the Robot’s Oscillatory System

Along with the theoretical studies, the computer simulation of the robot’s motion
has been carried out. Figure 2 shows two simulation models of the robot’s oscillatory
system developed in the MapleSim and SolidWorks software [21]. The models correspond
to the robot’s kinematic diagram considered above. The robot’s body (2) is sliding along
a horizontal surface (1). The rotary motor (3) actuates the crank (4) connected with the
rod (5). The latter sets the sliding rod (7) into the rectilinear oscillatory motion along the
guide (6). Due to the fact that the impact body (9) is connected with the sliding rod (7)
by the spring (8), the oscillations of the body (9) are excited. The relative motion of the
impact mass (9) is restricted by the impact plate (10) connected with the robot’s body by
the spring (11). In order to block the backward (leftward) motion of the robot’s body, the
special braking system (12) is used, providing different values of friction forces for different
motion directions.
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of the wheeled vibration-driven robot is carried out under the following conditions. The 
robot moves along a horizontal rubber track; the power supply is constant; the inertial, 
stiffness and damping parameters of the robot’s oscillatory system remain unchangeable 
[22]. The only parameter being changed is the initial impact gap 𝛿 , which can take the 
following values: 35 mm (nonimpact mode), 4 mm, and 0 mm (impact modes) (see Figure 
4). 

Figure 2. Simulation models of the robot’s oscillatory system: (a) MapleSim model; (b) SolidWorks
model. (1: stationary horizontal surface; 2: robot’s body; 3: rotary motor; 4: crank; 5: connecting
rod; 6: guide; 7: sliding rod; 8: spring; 9: disturbing body; 10: impact plate; 11: impact spring; 12:
controllable braking force).

2.3. Experimental Prototype of the Wheeled Vibration-Driven Robot

To verify the results of the numerical modeling and computer simulation, the robot’s
experimental prototype has been designed and implemented in practice [22]. The movable
platform (1) is mounted on the wheeled chassis (2) (Figure 3). The overrunning (free-wheel)
clutches (3) restrict the wheels’ backward rotation. The eccentric disc (crank) (4) is fixed on
the motor’s shaft (5). The control system (6) is based on Arduino hardware and software.
The rod (7) actuated by the eccentric (4) sets the sliding rod (8) into the oscillatory motion
along the guide (9). The rod (8) is fixed to the upper end of the flat spring (10). Its lower
end is connected with the impact body (11) sliding along the guides (12) with the help of
the linear bearings (13). The motion of the impact body (11) is restricted by the rubber
damper (14) fixed on the robot’s platform. The motor (5) and the control system (6) are
powered by the batteries placed in the boxes (17). The voltmeter-amperemeter (18) is used
for registering the total power supply during the robot’s motion under different operational
conditions.
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Figure 3. Experimental prototype of the wheeled vibration-driven robot: (a) 3D design; (b) Im-
plemented robot. (1: movable platform; 2: wheeled chassis; 3: overrunning (free-wheel) clutches;
4: eccentric; 5: electric motor; 6: control system; 7: connecting rod; 8: sliding rod; 9: guide; 10: flat
spring; 11: impact body; 12: guide rods; 13: linear bearings; 14: rubber damper; 15, 16: accelerometers;
17: boxes with batteries; 18: voltmeter-amperemeter).

3. Results and Discussion

The study on the influence of the impact gap value on the average translational speed
of the wheeled vibration-driven robot is carried out under the following conditions. The
robot moves along a horizontal rubber track; the power supply is constant; the inertial, stiff-
ness and damping parameters of the robot’s oscillatory system remain unchangeable [22].
The only parameter being changed is the initial impact gap δ0, which can take the following
values: 35 mm (nonimpact mode), 4 mm, and 0 mm (impact modes) (see Figure 4).
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3.1. Results of Numerical Modeling and Computer Simulation

The numerical modeling has been carried out in the Mathematica software, while
the computer simulation has been performed in the MapleSim and SolidWorks Motion
software. Due to the fact that the obtained results are very similar, let us present only
the plots obtained in the Mathematica software (see Figure 5) under the following input
parameters: m1 = 3.7 kg, m2 = 0.6 kg, ω = 37.7 rad/s (6 Hz), lAB = 0.025 m, lBC = 0.08 m,
k1 = 800 N/m, k2 = 104 N/m. During the time interval of 20 s (0–20 s), the robot’s
body passed the distance of 6.8 m at the initial impact gap of 4 mm; the distance of about
6.5 m—at the gaps of 2 and 6 mm; the distance of 5.9 m—at the gap of 8 mm. The smallest
distance of 5.6 m has been passed under the zero-gap conditions. Therefore, the largest
locomotion speed is about 0.34 m/s at an impact gap of 4 mm.
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3.2. Experimental Results

The experimental investigations (Figure 6) have been carried out at the Vibroengineer-
ing Laboratory of Lviv Polytechnic National University under three impact gap values:
35 mm (nonimpact mode), 4 mm, and 0 mm (impact modes). The control system allows for
providing a constant power supply to the robot’s drive. In such a case, the forced frequen-
cies took the following values: 6.9 Hz (nonimpact mode), 6.3 Hz (impact gap of 4 mm), and
5.4 Hz (zero-gap conditions). The wheeled platform and impact body accelerations have
been registered by the WitMotion BWT901CL accelerometers (WitMotion Shenzhen Co.,
Ltd., BWT901CL, Shenzhen, China). The experimental data have been processed with the
help of the WitMotion and MathCad software (PTC Inc., Mathcad 15.0, Needham, MA USA).

The results of the experimental investigations are presented in Figure 7a. The experi-
mental data (curves 4, 5, 6) of the robot accelerations have been interpolated (curves 1, 2, 3)
and numerically integrated with the help of the MathCad software. The corresponding time
dependencies of the robot’s instantaneous speeds and displacements have been obtained
(see Figure 7b,c). Numerical integration of the obtained results allows for concluding
that the robot’s average locomotion speed reaches 0.34 m/s at the impact gap of 4 mm,
whilst the use of the non-impact and zero-gap operational conditions provides almost
equal average velocities of about 0.26 m/s. Some differences between the modeling results
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and experimental data can be explained by the fact that the forced frequency changes
from 6.9 Hz under the non-impact conditions to 5.4 Hz at zero-gap mode despite the
unchangeable power supply to the robot’s drive.
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4. Conclusions

The present paper is dedicated to studying the dynamic behavior of the wheeled
vibration-driven robot. The robot’s general design idea is proposed in the form of the
3D model developed in the SolidWorks software and implemented in practice at the
Vibroengineering Laboratory of Lviv Polytechnic National University. The mathematical
model describing the robot locomotion is deduced using Euler–Lagrange equations. The
simplified computer simulation models of the robot’s oscillatory system are developed
in the MapleSim and SolidWorks software. The robot motion is numerically modeled,
simulated and experimentally tested under different impact gap values. The obtained
results satisfactorily agree with one another. Considering the forced frequency of about
5.4–6.9 Hz, the optimal impact gap value is in the range of 3–5 mm. In such a case, the
robot’s average locomotion velocity reaches 0.34 m/s. Herewith, the use of the non-impact
and zero-gap operational conditions provides almost equal average velocities of about
0.26 m/s. The obtained results can be used by designers and researchers of similar robotic
systems while choosing the optimal control strategies and defining the rational design
parameters. The scope of further investigations on the subject of the paper can be focused on
analyzing the robot’s drive power consumption under different operational conditions and
studying the complex optimization parameter, maximizing the robot’s average locomotion
speed and minimizing the drive power consumption.
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