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Abstract: A key factor for increasing the life of electronic devices and preventing early failure is the
implementation of thermal management techniques. In thermal management, phase change materials
(PCMs) are generally used. There have been a few studies conducted on PCM stability. Using thermal
cycle tests, PCM (RT 42)-based energy storage systems with and without pin fins were evaluated
for thermal stability. The material used for the pin fins and the heat sink was Aluminum 2024-T851.
During the thermal cycle tests, the PCM-based heat sinks at 10 W had a maximum temperature
difference of 1.088 ◦C. This leads to the PCM-based heat sink being stable during charging and
discharging. According to the results of the thermal cycle tests conducted on the PCM and triangular
pin-fin-based heat sink, the maximum temperature difference between the tests was 0.58 ◦C at 10 W.
Based on the results, the PCM triangular pin-fin heat sink is stable during charging and discharging.

Keywords: thermal cycle tests; thermal stability; phase change material; thermal charging and
discharging

1. Introduction

Sharma et al. [1] evaluated whether urea was conducted, and the thermal cycle
tests showed a change in the latent heat of the fusion and melting point of −21% and
−23.6 ◦C, respectively. It was observed that the urea did not melt after 50 cycles and −21%.
Tauseef-ur-Rehman et al. [2] investigated the operating time behavior of an unfinned heat
sink cavity with PCM. Sodhi et al. [3], depending on the criteria, described that the system
might have advantages over mono PCM systems. Compared to multi-PCMs, a single
PCM system can charge and discharge more efficiently. Thermal optimization using phase
change materials-based systems has been refined to prevent premature equipment mal-
function and maintain equipment reliability by Atouei et al. and Ali [4,5]. PCMs with high
latent heat storage capability, excellent thermal stability, and adequate melting/freezing
temperatures have sparked an interest in thermal control applications such as thermal
management electronic devices, as evidenced by Motahar et al. [6].

2. Experimental Setup

An experimental setup is illustrated in Figure 1, with labels for all of the components
used in the experiment. A PCM (RT-42) was used for the experiment. In recent experimental
research investigations, A. Arshad [7] reported that in the passive thermal management of
portable electronic devices, a heat sink that occupies 9% of the volume fraction is the most
efficient, given as:

ψPCM = [
VPCM

Vs − Vf
] (1)

Eng. Proc. 2022, 23, 20. https://doi.org/10.3390/engproc2022023020 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2022023020
https://doi.org/10.3390/engproc2022023020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0002-4350-276X
https://doi.org/10.3390/engproc2022023020
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2022023020?type=check_update&version=1


Eng. Proc. 2022, 23, 20 2 of 4

In Equation (1), the PCM volume fraction is denoted by ψPCM, the heat-sink volume
by Vs, and the fin volume by Vf. This experiment used 220 mL or 0.22 kg PCM (RT-42) with
a power supply of 10 W.
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3. Results and Discussion
3.1. Experimentally Calibration of the Heat Sink

This experiment model is validated with a simple cavity. A comparison of the ex-
perimental results of the heat sink and experimental cases can be found in Figure 3. The
experimental results supported the validity of the current experimental model, indicating
that the current model could be used in future studies.
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Figure 3. Experimental Validation for the heat sink.
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3.2. Analysis of Thermal Stability of PCM-Based Energy Storage System

A temperature versus time diagram is depicted in Figure 4, detailing the charging and
discharging for different thermal cycle tests on PCM-based heat sinks. This experiment
conducted twenty thermal cycling tests to determine the stability. The thermal cycle tests
were stopped because the temperature rarely changed during charging and discharging.
To calculate the results and compare the thermal cycles, 05, 10, 15, and 20 were selected.
Figure 4 shows the comparison of the thermocouple 4 results. After charging for 1.5 h, the
maximum temperature for thermal cycle 20 was 44.821 ◦C, and the minimum temperature
for thermal cycle 05 was 43.733 ◦C; so, there was a maximum temperature difference of
1.088 ◦C, as shown in Table 1, and all of the thermal cycles reached room temperature after
discharging for 3.25 h, as shown in Figure 5.
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Figure 4. Thermal cycle tests analysis of PCM-based energy storage system.

Table 1. After charging, the highest temperature, and the temperature differential for Thermal Cycle
Tests (TCTs).

TCTs FOR PCM-BASED HEAT SINK TCTs FOR PCM & PIN FIN BASED HEAT SINK
MAXIMUM TEMPERATURE MAXIMUM TEMPERATURE

Cycle 5 (C5) Cycle 10 (C10) Cycle 15 (C15) Cycle 20 (C20) Cycle 5 (C5) Cycle 10 (C10) Cycle 15 (C15) Cycle 20 (C20)
43.733 ◦C 44.286 ◦C 44.582 ◦C 44.821 ◦C 39.429 ◦C 38.884 ◦C 39.139 ◦C 38.849 ◦C

DIFFERENCE IN TEMPERATURE DURING TCTs DIFFERENCE IN TEMPERATURE DURING TCTs

C10–C5 0.553 ◦C C5–C10 0.545 ◦C
C15–C5 0.849 ◦C C5–C15 0.29 ◦C
C20–C5 1.088 ◦C C5–C20 0.58 ◦C
C15–C10 0.296 ◦C C15–C10 0.255 ◦C
C20–C10 0.535 ◦C C10–C20 0.035 ◦C
C20–C15 0.239 ◦C C15–C20 0.29 ◦C
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Figure 5. Thermal cycle tests analysis of PCM and triangular pin fin-based energy storage system.
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3.3. Analysis of Thermal Stability of PCM and Triangular Pin Fin-Based Energy Storage System

According to H. M. Ali et al. [8], pin-fins arranged in a triangular configuration are
best suited for heat transfer, whether with or without PCM. This experiment conducted
twenty thermal cycling tests to analyze the stability. The thermal cycle tests were stopped
since the temperature rarely changed during charging and discharging. The thermal cycles,
05, 10, 15, and 20, were selected to calculate and compare the results. A comparison of the
thermocouple 4 results can be seen in Figure 5. After charging for 1.5 h, thermal cycle 05
reached a maximum temperature of 39.429 ◦C, and thermal cycle 20 reached a minimum
temperature of 38.849 ◦C; so, the maximum deviation was 0.58 ◦C, as shown in Table 1, and
all of the thermal cycles reached room temperature after discharging for 6 h, as depicted in
Figure 5.

4. Conclusions

Energy storage systems based on PCMs were stable under the thermal cycle tests, with
a maximum temperature deviation of 1.088 ◦C. Moreover, the PCM and triangular pin-fin
heat sink performed well in the thermal cycle tests, with maximum temperature deviations
of 0.58 ◦C, indicating the stability of the energy storage systems. The experiment’s drawback
was that the discharge took too long to reach room temperature.
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