
Citation: Ke, K.; Chen, Y. A Joint

Optimization of Maintenance and

Scheduling for Unrelated Parallel

Machine Problem Based on

Hybrid Discrete Spider Monkey

Optimization Algorithm. Eng. Proc.

2022, 23, 16. https://doi.org/

10.3390/engproc2022023016

Academic Editors: Mahabat Khan, M.

Javed Hyder, Muhammad Irfan and

Manzar Masud

Published: 20 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

A Joint Optimization of Maintenance and Scheduling for
Unrelated Parallel Machine Problem Based on Hybrid
Discrete Spider Monkey Optimization Algorithm †

Ke Ke and Yarong Chen *

School of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China
* Correspondence: yarongchen@126.com
† Presented at the 2nd International Conference on Advances in Mechanical Engineering (ICAME-22),

Islamabad, Pakistan, 25 August 2022.

Abstract: In general, the parallel machine scheduling problem that minimizes maximum completion
time is NP-hard in a strong sense; a lot of heuristics have been proposed for this kind of problem.
In this paper, the unrelated parallel machine scheduling problem with maintainability (UPMSPM)
is studied, in which the reliability of machines obeys exponential distribution. A hybrid algorithm
HDSMO, which combines the discrete spider monkey algorithm (SMO) with the crossover and
mutation operation, is proposed to solve UPMSPM. In view of the lack of local search capability in
the later iteration of the traditional SMO algorithm, inertial weights are introduced to update the
local leader and the global leader. Computational experiments with randomly generated instances
demonstrate that the proposed HDSMO algorithm can obtain significantly better solutions in a
shorter time than GA and SMO algorithms.

Keywords: unrelated parallel machine scheduling; spider monkey optimization; preventive
maintenance

1. Introduction

UPMSP is an important branch of production scheduling. In the real-world production
system, long-term running wear and performance degradation of the machines can easily
lead to production interruptions, requiring preventive maintenance (PM) to keep machines
running [1]. Therefore, it is of great significance to consider the joint optimization of
maintenance and scheduling for UPMSP [2]. UPMSP studies considering maintenance are
relatively rare, and several classic studies are as follows [3].

Cheng et al. studied UPMSP with degradation and maintenance and proved that the
problem could be optimally solved in polynomial time [4]. Avalos-Rosales et al. studied
unrelated parallel machines and considered preventive maintenance activities and setup
times by order and by machine [5]. Luo J et al. proposed a predictable scheduling and
rescheduling and accounting for machine failures and consistency in unrelated machine
environments, where work separations include printed circuit boards (PCB) [6].

Comparatively speaking, the research on UPMSP based on the Spider Monkey Opti-
mization (SMO) algorithm is rare. Aiming at the optimization problem of unrelated parallel
machine maintenance and scheduling integration, this paper proposes a hybrid spider
monkey algorithm, and compares it with classical algorithms to provide the foundation for
solving UPMSP [7].

2. Problem Formulation

The problem studies in this paper can be described as follows: n jobs are to be
processed on m unrelated parallel machines; in most situations, we assume m is less than
n, and these jobs are non-preemptive and can all be processed at time 0. Maintenance

Eng. Proc. 2022, 23, 16. https://doi.org/10.3390/engproc2022023016 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2022023016
https://doi.org/10.3390/engproc2022023016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0003-1878-1370
https://doi.org/10.3390/engproc2022023016
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2022023016?type=check_update&version=1

Eng. Proc. 2022, 23, 16 2 of 5

performed on the machine may depend on the state of the machine (e.g., running time).
The state of a machine is determined by reliability, which decreases with the cumulative
processing time of the workpiece or degradation of the machine. Once the reliability of
the machine falls below the threshold rth, PM must be implemented. The reliability of the
machine does not change during operation.

Using the three-field notation α|β|γ for describing scheduling problems, we de-
note our problem by Rm/nr, VPM/Cmax, where nr denotes those jobs are non-resumable;
“VPM” denotes variable PM; the objective is to minimize the maximum completion time.
The decision is to determine the allocation and sequence of n jobs on m machines and the
maintenance time of the machines. Since problem Rm//Cmax has been proved to be an
NP-Hard problem, it can be concluded that problem Rm/nr, VPM/Cmax is an NP-Hard
problem by comparison. Thus, the approximate methods are needed to solve real-size
instances.

3. HDSMO Algorithm
3.1. Basic Flow of the HDSMO Algorithm

SMO is a proposed global optimization algorithm; the main feature is that it can
improve the ability to search for optimal solutions. However, in the traditional SMO algo-
rithm, the spider monkey individual SMh completely inherits the old location information
of the individual in the updating process, which makes the algorithm lack the local search
ability in the late iteration. An HDSMO algorithm considering inertia weight aims at the
above problems and shortcomings. nllc and nlll represent the local leader counter and limit,
respectively, while nglc and ngll represents the global leader counter and limit. The process
of the proposed HDSMO algorithm is shown in Figure 1.

Eng. Proc. 2022, 23, 16 2 of 5

The problem studies in this paper can be described as follows: 𝑛 jobs are to be
processed on 𝑚 unrelated parallel machines; in most situations, we assume m is less than
n, and these jobs are non-preemptive and can all be processed at time 0. Maintenance
performed on the machine may depend on the state of the machine (e.g., running time).
The state of a machine is determined by reliability, which decreases with the cumulative
processing time of the workpiece or degradation of the machine. Once the reliability of
the machine falls below the threshold 𝑟௧௛, PM must be implemented. The reliability of the
machine does not change during operation.

Using the three-field notation α|β|γ for describing scheduling problems, we denote
our problem by Rm/nr, VPM/C୫ୟ୶,where 𝑛𝑟 denotes those jobs are non-resumable; “VPM”
denotes variable PM; the objective is to minimize the maximum completion time. The
decision is to determine the allocation and sequence of 𝑛 jobs on 𝑚 machines and the
maintenance time of the machines. Since problem Rm//C୫ୟ୶ has been proved to be an NP-
Hard problem, it can be concluded that problem Rm/nr, VPM/C୫ୟ୶ is an NP-Hard
problem by comparison. Thus, the approximate methods are needed to solve real-size
instances.

3. HDSMO Algorithm
3.1. Basic Flow of the HDSMO Algorithm

SMO is a proposed global optimization algorithm; the main feature is that it can
improve the ability to search for optimal solutions. However, in the traditional SMO
algorithm, the spider monkey individual 𝑆𝑀௛ completely inherits the old location
information of the individual in the updating process, which makes the algorithm lack the
local search ability in the late iteration. An HDSMO algorithm considering inertia weight
aims at the above problems and shortcomings. 𝑛௟௟௖ and 𝑛௟௟௟ represent the local leader
counter and limit, respectively, while 𝑛௚௟௖ and 𝑛௚௟௟ represents the global leader counter
and limit. The process of the proposed HDSMO algorithm is shown in Figure 1.

Figure 1. Flow chart of the proposed HDSMO.

3.2. Local Leader Phase (LLP) Update with the Inertia Weight 𝑆𝑀௡௘௪೓ = 𝑝ଵ⨂𝑓(𝑝௥ ⊗ 𝑔(𝑝௪ ⊗ 𝑣(𝑆𝑀௛), 𝐿𝐿௟), 𝑆𝑀௥) (1)

The position update process in the local leader stage of the SMO algorithm is shown
in Equation (1): the population is first divided into different groups, 𝑣(𝑆𝑀௛) is the
mutation operation added to enhance the local search ability according to inertia weight 𝑃௪. For the individuals of the first 50% generation population and the last 50% generation
population, the mutation operation methods of reverse order and two-point exchange can
be used respectively, which can effectively improve the diversity of the population and
further improve the local search ability of the algorithm. The mutation method is shown

Figure 1. Flow chart of the proposed HDSMO.

3.2. Local Leader Phase (LLP) Update with the Inertia Weight

SMnewh = p1 ⊗ f (pr ⊗ g(pw ⊗ v(SMh), LLl), SMr) (1)

The position update process in the local leader stage of the SMO algorithm is shown in
Equation (1): the population is first divided into different groups, v(SMh) is the mutation
operation added to enhance the local search ability according to inertia weight Pw. For the
individuals of the first 50% generation population and the last 50% generation population,
the mutation operation methods of reverse order and two-point exchange can be used
respectively, which can effectively improve the diversity of the population and further
improve the local search ability of the algorithm. The mutation method is shown in Figure 2,
where 0 represents the machine, and the remaining numbers represent the job.

Eng. Proc. 2022, 23, 16 3 of 5

Eng. Proc. 2022, 23, 16 3 of 5

in Figure 2, where 0 represents the machine, and the remaining numbers represent the
job.

Figure 2. Two mutation operations (a) reverse order (b) exchange. 𝑔(𝑝௪ ⊗ 𝑣(𝑆𝑀௛), 𝐿𝐿௟) and 𝑓(𝑝௥ ⊗ 𝑔(𝑝௪ ⊗ 𝑣(𝑆𝑀௛), 𝐿𝐿௟), 𝑆𝑀௥) represent crossover
operations. The mutant individuals cross with 𝐿𝐿 according to crossover rate 𝑃௥, and the
generated new individuals cross with random individuals according to crossover rate 𝑃ଵ.
In this paper, two crossover methods are designed based on whether there are identical
parts between individuals, as shown in Figure 3.

Figure 3. Two kinds of crossover operation (a) with the same parts; (b) without the same parts.

3.3. Global Leader Phase (GLP) Update with the Inertia Weight
At this phase, individual 𝑆𝑀௛ mutates according to crossover rate inertia weight 𝑃௪,

and then crosses with 𝐺𝐿 according to crossover rate 𝑃௥ , and the generated new
individuals cross with random individuals according to crossover rate 𝑃ଶ . The same
method is shown in Section 3.2.

4. Numerical Example and Analysis
4.1. Parameters Setting

The experimental data include the number of machines 𝑚, the number of jobs 𝑛, the
processing time 𝑝௜௝, the PM parameters including the threshold 𝑈𝑇, and the maintenance
time 𝑡௉ெ. For each combination of problem instance size, Generate 10 random problem
instances. The instances and the range of experimental parameters are shown in Table 1,
the parameters of the GA algorithm and the DSMO algorithm are experimentally
analyzed, and the algorithm parameter values under different problem scales are
determined as shown in Table 2.

Table 1. Experimental problem scale and parameter range.

Size 𝒎 𝒏 𝒑𝒊𝒋 𝒕𝑷𝑴
Small 2,3 6,8 𝑈[1, 100] 10

Medium 4,5 30,50 𝑈[1, 100] 20
Large 10,20 100,200 𝑈[1, 100] 20

Table 2. Parameter values for algorithms.

Parameter
GA DSMO HDSMO

Small Medium Large Small Medium Large Small Medium Large
N 100 350 500 100 300 450 100 350 200 𝑀𝑎𝑥𝑡 200 400 500 100 400 500 100 400 500 𝑝ଵ 0.4 0.3 0.5 0.3 0.6 0.8 0.2 0.3 0.5 𝑝ଶ 0.15 0.2 0.2 0.5 0.6 0.8 0.4 0.3 0.5 𝑝௪ / / / / / / 0.05 0.25 0.35

4.2. Computational Experiments and Discussion

Figure 2. Two mutation operations (a) reverse order (b) exchange.

g(pw ⊗ v(SMh), LLl) and f (pr ⊗ g(pw ⊗ v(SMh), LLl), SMr) represent crossover op-
erations. The mutant individuals cross with LL according to crossover rate Pr, and the
generated new individuals cross with random individuals according to crossover rate P1.
In this paper, two crossover methods are designed based on whether there are identical
parts between individuals, as shown in Figure 3.

Eng. Proc. 2022, 23, 16 3 of 5

in Figure 2, where 0 represents the machine, and the remaining numbers represent the
job.

Figure 2. Two mutation operations (a) reverse order (b) exchange. 𝑔(𝑝௪ ⊗ 𝑣(𝑆𝑀௛), 𝐿𝐿௟) and 𝑓(𝑝௥ ⊗ 𝑔(𝑝௪ ⊗ 𝑣(𝑆𝑀௛), 𝐿𝐿௟), 𝑆𝑀௥) represent crossover
operations. The mutant individuals cross with 𝐿𝐿 according to crossover rate 𝑃௥, and the
generated new individuals cross with random individuals according to crossover rate 𝑃ଵ.
In this paper, two crossover methods are designed based on whether there are identical
parts between individuals, as shown in Figure 3.

Figure 3. Two kinds of crossover operation (a) with the same parts; (b) without the same parts.

3.3. Global Leader Phase (GLP) Update with the Inertia Weight
At this phase, individual 𝑆𝑀௛ mutates according to crossover rate inertia weight 𝑃௪,

and then crosses with 𝐺𝐿 according to crossover rate 𝑃௥ , and the generated new
individuals cross with random individuals according to crossover rate 𝑃ଶ . The same
method is shown in Section 3.2.

4. Numerical Example and Analysis
4.1. Parameters Setting

The experimental data include the number of machines 𝑚, the number of jobs 𝑛, the
processing time 𝑝௜௝, the PM parameters including the threshold 𝑈𝑇, and the maintenance
time 𝑡௉ெ. For each combination of problem instance size, Generate 10 random problem
instances. The instances and the range of experimental parameters are shown in Table 1,
the parameters of the GA algorithm and the DSMO algorithm are experimentally
analyzed, and the algorithm parameter values under different problem scales are
determined as shown in Table 2.

Table 1. Experimental problem scale and parameter range.

Size 𝒎 𝒏 𝒑𝒊𝒋 𝒕𝑷𝑴
Small 2,3 6,8 𝑈[1, 100] 10

Medium 4,5 30,50 𝑈[1, 100] 20
Large 10,20 100,200 𝑈[1, 100] 20

Table 2. Parameter values for algorithms.

Parameter
GA DSMO HDSMO

Small Medium Large Small Medium Large Small Medium Large
N 100 350 500 100 300 450 100 350 200 𝑀𝑎𝑥𝑡 200 400 500 100 400 500 100 400 500 𝑝ଵ 0.4 0.3 0.5 0.3 0.6 0.8 0.2 0.3 0.5 𝑝ଶ 0.15 0.2 0.2 0.5 0.6 0.8 0.4 0.3 0.5 𝑝௪ / / / / / / 0.05 0.25 0.35

4.2. Computational Experiments and Discussion

Figure 3. Two kinds of crossover operation (a) with the same parts; (b) without the same parts.

3.3. Global Leader Phase (GLP) Update with the Inertia Weight

At this phase, individual SMh mutates according to crossover rate inertia weight Pw,
and then crosses with GL according to crossover rate Pr, and the generated new individuals
cross with random individuals according to crossover rate P2. The same method is shown
in Section 3.2.

4. Numerical Example and Analysis
4.1. Parameters Setting

The experimental data include the number of machines m, the number of jobs n, the
processing time pij, the PM parameters including the threshold UT, and the maintenance
time tPM. For each combination of problem instance size, Generate 10 random problem
instances. The instances and the range of experimental parameters are shown in Table 1,
the parameters of the GA algorithm and the DSMO algorithm are experimentally analyzed,
and the algorithm parameter values under different problem scales are determined as
shown in Table 2.

Table 1. Experimental problem scale and parameter range.

Size m n pij tPM

Small 2,3 6,8 U[1, 100] 10
Medium 4,5 30,50 U[1, 100] 20

Large 10,20 100,200 U[1, 100] 20

Table 2. Parameter values for algorithms.

Parameter
GA DSMO HDSMO

Small Medium Large Small Medium Large Small Medium Large

N 100 350 500 100 300 450 100 350 200
Maxt 200 400 500 100 400 500 100 400 500

p1 0.4 0.3 0.5 0.3 0.6 0.8 0.2 0.3 0.5
p2 0.15 0.2 0.2 0.5 0.6 0.8 0.4 0.3 0.5
pw / / / / / / 0.05 0.25 0.35

4.2. Computational Experiments and Discussion

The computational experiments result for the different algorithms are given in Table 3.
Each algorithm calculates the average relative percentage deviation (PD) from the optimal

Eng. Proc. 2022, 23, 16 4 of 5

Cmax solution, i.e., the value PD = Cmax−C∗
max

C∗
max

. There is also the average computed time in
seconds (CT).

Table 3. The performance of the algorithms.

Size n*m*
GA DSMO HDSMO

CT PD CT PD CT PD

Small

n6m2 1.741 0 0.904 0 3.237 0
n6m3 1.619 0 1.027 0.027 4.226 0
n8m2 1.417 0 0.982 0.012 3.45 0
n8m3 2.239 0.008 1.139 0.031 4.394 0.002

Medium

n30m4 19.499 0.461 43.592 0.436 50.455 0
n30m5 18.533 0.764 45.173 0.711 52.502 0
n50m4 25.016 0.899 67.643 0.92 72.982 0.007
n50m5 24.789 1.137 68.049 1.175 71.131 0

Large

n100m10 121.056 3.843 289.134 3.926 138.101 0
n100m20 179.374 7.294 329.983 7.1 169.284 0
n200m10 215.577 4.709 546.221 4.633 247.991 0.002
n200m20 255.377 10.451 587.604 9.618 265.533 0.005

It can be concluded from Table 3 that HDSMO is superior to DSMO and GA in average
relative percentage deviation for three scale problems. However, in terms of computation
time, the DSMO algorithm outperforms GA and HDSMO for the small problems, and the
needed computation time of HDSMO is decreased with the increase in the problem size.
The HDSMO algorithm is a recommended method for solving large and medium-sized
problems because it can give approximate optimal solutions in a short computing time.

5. Conclusions

According to the property of the addressed problem and the decision-making method
of “job-grouping batch and allocating”, a hybrid discrete SMO algorithm is proposed in
this paper. Experimental results demonstrate that HDSMO is superior to GA and DSMO in
solving quality and effectiveness.

Author Contributions: Conceptualization, Y.C.; methodology, K.K.; software, K.K.; validation, K.K.;
formal analysis, K.K.; investigation, K.K.; resources, Y.C.; data—curation, K.K.; writing—original
draft preparation, K.K., writing—review and editing, K.K.; visualization, K.K.; supervision, Y.C.,
project administration, Y.C.; funding acquisition: Y.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China grant number
[No.51705370].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mumtaz, J.; Guan, Z.; Yue, L.; Zhang, L.; He, C. Hybrid Spider Monkey Optimisation Algorithm for Multi-Level Planning and

Scheduling Problems of Assembly Lines. Int. J. Prod. Res. 2020, 58, 6252–6267. [CrossRef]
2. Lei, D.; Liu, M. An Artificial Bee Colony with Division for Distributed Unrelated Parallel Machine Scheduling with Preventive

Maintenance. Comput. Ind. Eng. 2020, 141, 106320. [CrossRef]
3. Mirabedini, S.N.; Iranmanesh, H. A Scheduling Model for Serial Jobs on Parallel Machines with Different Preventive Maintenance

(PM). Int. J. Adv. Manuf. Technol. 2014, 70, 1579–1589. [CrossRef]

http://doi.org/10.1080/00207543.2019.1675917
http://doi.org/10.1016/j.cie.2020.106320
http://doi.org/10.1007/s00170-013-5348-4

Eng. Proc. 2022, 23, 16 5 of 5

4. Cheng, T.C.E.; Hsu, C.J.; Yang, D.L. Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities. Comput.
Ind. Eng. 2011, 60, 602–605. [CrossRef]

5. Avalos-Rosales, O.; Angel-Bello, F.; Álvarez, A.; Cardona-Valdés, Y. Including Preventive Maintenance Activities in an Unrelated
Parallel Machine Environment with Dependent Setup Times. Comput. Ind. Eng. 2018, 123, 364–377. [CrossRef]

6. Luo, J.; Liu, J.; Hu, Y. An MILP Model and a Hybrid Evolutionary Algorithm for Integrated Operation Optimisation of Multi-Head
Surface Mounting Machines in PCB Assembly. Int. J. Prod. Res. 2017, 55, 145–160. [CrossRef]

7. Lei, D.; Yang, H. Scheduling Unrelated Parallel Machines with Preventive Maintenance and Setup Time: Multi-Sub-Colony
Artificial Bee Colony. Appl. Soft Comput. 2022, 125, 109154. [CrossRef]

http://doi.org/10.1016/j.cie.2010.12.017
http://doi.org/10.1016/j.cie.2018.07.006
http://doi.org/10.1080/00207543.2016.1200154
http://doi.org/10.1016/j.asoc.2022.109154

	Introduction
	Problem Formulation
	HDSMO Algorithm
	Basic Flow of the HDSMO Algorithm
	Local Leader Phase (LLP) Update with the Inertia Weight
	Global Leader Phase (GLP) Update with the Inertia Weight

	Numerical Example and Analysis
	Parameters Setting
	Computational Experiments and Discussion

	Conclusions
	References

