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Abstract: In general, the parallel machine scheduling problem that minimizes maximum completion
time is NP-hard in a strong sense; a lot of heuristics have been proposed for this kind of problem.
In this paper, the unrelated parallel machine scheduling problem with maintainability (UPMSPM)
is studied, in which the reliability of machines obeys exponential distribution. A hybrid algorithm
HDSMO, which combines the discrete spider monkey algorithm (SMO) with the crossover and
mutation operation, is proposed to solve UPMSPM. In view of the lack of local search capability in
the later iteration of the traditional SMO algorithm, inertial weights are introduced to update the
local leader and the global leader. Computational experiments with randomly generated instances
demonstrate that the proposed HDSMO algorithm can obtain significantly better solutions in a
shorter time than GA and SMO algorithms.

Keywords: unrelated parallel machine scheduling; spider monkey optimization; preventive
maintenance

1. Introduction

UPMSP is an important branch of production scheduling. In the real-world production
system, long-term running wear and performance degradation of the machines can easily
lead to production interruptions, requiring preventive maintenance (PM) to keep machines
running [1]. Therefore, it is of great significance to consider the joint optimization of
maintenance and scheduling for UPMSP [2]. UPMSP studies considering maintenance are
relatively rare, and several classic studies are as follows [3].

Cheng et al. studied UPMSP with degradation and maintenance and proved that the
problem could be optimally solved in polynomial time [4]. Avalos-Rosales et al. studied
unrelated parallel machines and considered preventive maintenance activities and setup
times by order and by machine [5]. Luo J et al. proposed a predictable scheduling and
rescheduling and accounting for machine failures and consistency in unrelated machine
environments, where work separations include printed circuit boards (PCB) [6].

Comparatively speaking, the research on UPMSP based on the Spider Monkey Opti-
mization (SMO) algorithm is rare. Aiming at the optimization problem of unrelated parallel
machine maintenance and scheduling integration, this paper proposes a hybrid spider
monkey algorithm, and compares it with classical algorithms to provide the foundation for
solving UPMSP [7].

2. Problem Formulation

The problem studies in this paper can be described as follows: n jobs are to be
processed on m unrelated parallel machines; in most situations, we assume m is less than
n, and these jobs are non-preemptive and can all be processed at time 0. Maintenance
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performed on the machine may depend on the state of the machine (e.g., running time).
The state of a machine is determined by reliability, which decreases with the cumulative
processing time of the workpiece or degradation of the machine. Once the reliability of
the machine falls below the threshold rth, PM must be implemented. The reliability of the
machine does not change during operation.

Using the three-field notation α|β|γ for describing scheduling problems, we de-
note our problem by Rm/nr, VPM/Cmax, where nr denotes those jobs are non-resumable;
“VPM” denotes variable PM; the objective is to minimize the maximum completion time.
The decision is to determine the allocation and sequence of n jobs on m machines and the
maintenance time of the machines. Since problem Rm//Cmax has been proved to be an
NP-Hard problem, it can be concluded that problem Rm/nr, VPM/Cmax is an NP-Hard
problem by comparison. Thus, the approximate methods are needed to solve real-size
instances.

3. HDSMO Algorithm
3.1. Basic Flow of the HDSMO Algorithm

SMO is a proposed global optimization algorithm; the main feature is that it can
improve the ability to search for optimal solutions. However, in the traditional SMO algo-
rithm, the spider monkey individual SMh completely inherits the old location information
of the individual in the updating process, which makes the algorithm lack the local search
ability in the late iteration. An HDSMO algorithm considering inertia weight aims at the
above problems and shortcomings. nllc and nlll represent the local leader counter and limit,
respectively, while nglc and ngll represents the global leader counter and limit. The process
of the proposed HDSMO algorithm is shown in Figure 1.
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3.2. Local Leader Phase (LLP) Update with the Inertia Weight

SMnewh = p1 ⊗ f (pr ⊗ g(pw ⊗ v(SMh), LLl), SMr) (1)

The position update process in the local leader stage of the SMO algorithm is shown in
Equation (1): the population is first divided into different groups, v(SMh) is the mutation
operation added to enhance the local search ability according to inertia weight Pw. For the
individuals of the first 50% generation population and the last 50% generation population,
the mutation operation methods of reverse order and two-point exchange can be used
respectively, which can effectively improve the diversity of the population and further
improve the local search ability of the algorithm. The mutation method is shown in Figure 2,
where 0 represents the machine, and the remaining numbers represent the job.
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g(pw ⊗ v(SMh), LLl) and f (pr ⊗ g(pw ⊗ v(SMh), LLl), SMr) represent crossover op-
erations. The mutant individuals cross with LL according to crossover rate Pr, and the
generated new individuals cross with random individuals according to crossover rate P1.
In this paper, two crossover methods are designed based on whether there are identical
parts between individuals, as shown in Figure 3.
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3.3. Global Leader Phase (GLP) Update with the Inertia Weight

At this phase, individual SMh mutates according to crossover rate inertia weight Pw,
and then crosses with GL according to crossover rate Pr, and the generated new individuals
cross with random individuals according to crossover rate P2. The same method is shown
in Section 3.2.

4. Numerical Example and Analysis
4.1. Parameters Setting

The experimental data include the number of machines m, the number of jobs n, the
processing time pij, the PM parameters including the threshold UT, and the maintenance
time tPM. For each combination of problem instance size, Generate 10 random problem
instances. The instances and the range of experimental parameters are shown in Table 1,
the parameters of the GA algorithm and the DSMO algorithm are experimentally analyzed,
and the algorithm parameter values under different problem scales are determined as
shown in Table 2.

Table 1. Experimental problem scale and parameter range.

Size m n pij tPM

Small 2,3 6,8 U[1, 100] 10
Medium 4,5 30,50 U[1, 100] 20

Large 10,20 100,200 U[1, 100] 20

Table 2. Parameter values for algorithms.

Parameter
GA DSMO HDSMO

Small Medium Large Small Medium Large Small Medium Large

N 100 350 500 100 300 450 100 350 200
Maxt 200 400 500 100 400 500 100 400 500

p1 0.4 0.3 0.5 0.3 0.6 0.8 0.2 0.3 0.5
p2 0.15 0.2 0.2 0.5 0.6 0.8 0.4 0.3 0.5
pw / / / / / / 0.05 0.25 0.35

4.2. Computational Experiments and Discussion

The computational experiments result for the different algorithms are given in Table 3.
Each algorithm calculates the average relative percentage deviation (PD) from the optimal
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Cmax solution, i.e., the value PD = Cmax−C∗
max

C∗
max

. There is also the average computed time in
seconds (CT).

Table 3. The performance of the algorithms.

Size n*m*
GA DSMO HDSMO

CT PD CT PD CT PD

Small

n6m2 1.741 0 0.904 0 3.237 0
n6m3 1.619 0 1.027 0.027 4.226 0
n8m2 1.417 0 0.982 0.012 3.45 0
n8m3 2.239 0.008 1.139 0.031 4.394 0.002

Medium

n30m4 19.499 0.461 43.592 0.436 50.455 0
n30m5 18.533 0.764 45.173 0.711 52.502 0
n50m4 25.016 0.899 67.643 0.92 72.982 0.007
n50m5 24.789 1.137 68.049 1.175 71.131 0

Large

n100m10 121.056 3.843 289.134 3.926 138.101 0
n100m20 179.374 7.294 329.983 7.1 169.284 0
n200m10 215.577 4.709 546.221 4.633 247.991 0.002
n200m20 255.377 10.451 587.604 9.618 265.533 0.005

It can be concluded from Table 3 that HDSMO is superior to DSMO and GA in average
relative percentage deviation for three scale problems. However, in terms of computation
time, the DSMO algorithm outperforms GA and HDSMO for the small problems, and the
needed computation time of HDSMO is decreased with the increase in the problem size.
The HDSMO algorithm is a recommended method for solving large and medium-sized
problems because it can give approximate optimal solutions in a short computing time.

5. Conclusions

According to the property of the addressed problem and the decision-making method
of “job-grouping batch and allocating”, a hybrid discrete SMO algorithm is proposed in
this paper. Experimental results demonstrate that HDSMO is superior to GA and DSMO in
solving quality and effectiveness.
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