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Abstract: With rapid developments in the construction industry, it has become vital to develop struc-
tures and materials that are both cost-effective and environmentally sustainable in order to reduce
carbon footprints. This research work aimed to inspect mechanical as well as durability aspects of
self-compacting concrete (SCC) using thermo-mechanical activation and mechanical activation of
bentonite as a partial replacement of cement by weight. Incorporating supplemental cementitious
materials (SCMs), many researchers found that the mechanical and durability characteristics of SCC
can be enhanced. Activation treatments can improve the binding capacity of bentonite and enhance
its substitution level. Bentonite was replaced by weight with ordinary Portland cement (OPC) in pro-
portions of 10%, 15%, 20%, and 25%. By introducing bentonite, the fresh characteristics of SCC were
reduced but remained within the limitation given by the EFNARC. The use of thermo-mechanical
activation can significantly increase both hardened and durability properties. Compressive and split
tensile strength yielded the best results at 15% substitution level and were comparable at 25%. Water
absorption and resistance to acid attack showed better results with an increase in bentonite content at
56 days. These findings indicate that the use of bentonite can cut CO2 emissions while also producing
long-lasting SCC at a reasonable price.

Keywords: bentonite; slump flow; self-compacting concrete; mineral admixture; acid attack resistance

1. Introduction

Nowadays, self-compacting concrete (SCC) is certainly a usual feature of construction
industries, used to minimize the challenges that come with normally used concrete. Self-
compacting concrete fills the congested parts of formwork due to its own weight due
to its high flowability and passing ability. Due to its ability to fill the congested parts
of formwork, it excludes the use of compactors or vibrators that are normally used in
ordinary concrete. By using SCC, duties of labor are limited to some extent. Pumping for
longer distances is possible due to its great mobility and non-segregation property [1]. SCC
has many advantages over ordinary concrete, including lower costs, improved concrete
qualities, and quick construction [2].

SCC is defined mainly by two main features: Resistance to segregation and high
deformability or flowability. The homogeneity and stability of SCC are due to its resistance
to segregation and it providing acceptable deformability. Resistance to segregation is
provided by increasing fines or by introducing a viscosity modifying admixture (VMA).
These viscosity-altering chemical additives are quite costly, and they are the primary
reason for SCC pricing increases [3]. Furthermore, the amount of cement needed to form a
paste in self-compacting concrete is greater, resulting in an increase of heat of hydration
and other environmental and economic issues linked with the usage of cement [4]. For
that purpose, additions of pozzolanic as well as advanced substitution materials such as
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flay ash and silica fumes are recommended for the production of SCC, which improves
fresh and mechanical and durability characteristics [5]. Use of untreated bentonite as a
supplementary cementations material in concrete was explored, and it was discovered
that when the amount of bentonite was enhanced, the fresh properties decreased and the
water absorption of concrete increased, while bentonite increased 56 days’ strength. Similar
trends have been observed elsewhere. Hazardous chemical penetration can be minimized
by incorporating SCMs with OPC. Via the hydration process of cement, calcium hydroxide
(CH) is produced as a principal by-product, which is the key focus for reinforcement
corrosion. During pozzolanic activity, the pozzolanic material utilizes CH and extra gel of
calcium silicate hydrate (CSH) is generated, resulting in increased strength and durability
of concrete [6].

Different methods can be used to activate pozzolanic material, i.e., thermally, mechan-
ically, and by using some chemical activation techniques. Mechanical activation entails
grinding the material into powder to increase the surface area and improve the fineness
of SCMs. Previous studies established that mechanical activation (grinding) increases
pozzolanic responsiveness [7]. In precast concrete, self-compacting concrete (SCC) is also
increasingly being used for the construction of precast sewer pipes and drainage systems
that are susceptible to chemical attack. Since SCC has a different mix design than conven-
tional concrete, its sustainability in these applications must be evaluated. In particular, SCC
can be made with varying amounts of bentonite as a substitute for cement, which is done
in order to improve its durability properties [8]. Heating the pozzolanic material means
heating it or curing the sample made with pozzolanic material (calcination). Thermal
treatment of clays results in a stable state due to its disordered structure, and a crystalline
dynamic structure is formed [9].

Nowadays, calcined clays have become popular due to their ability to activate with
comparatively little energy, in contrast to cement, which requires a large amount of energy
to produce, and therefore they are readily available worldwide [10]. Due to the presence
of moisture-liberated CH due to hydration, the cement combines with the silica (SiO2)
component of pozzolana to generate CSH gel to enhance the pozzolanic reaction [11].
Musarat et al. conducted extensive research on varying ratios of bentonite as a VMA and
found that employing bentonite as VMA boosts viscosity and resistance to segregation up
to the optimum amount. These findings suggest that using thermo-mechanically treated
bentonite will cut CO2 emissions [12].

The literature review indicates that there are many research works that have been
carried out by utilizing bentonite as a fractional substitute of cement to make ordinary
and self-compacting concrete. Hence, the main purpose of this research work was to
compare the different fresh, hardened, and durability features of SCC by incorporating
thermo-mechanically activated (TMA) and mechanically activated (MA) bentonite in a
low impact environment. The level of substitution for both TMA and MA was at 10%,
15%, 20%, and 25% replacement by weight of cement. The tests performed were slump
flow and compressive strength. Another key feature was the evaluation of some durability
properties, such as water absorption and acid attack. All of these tests were performed
for up to 56 days to evaluate the characteristics of SCC. Findings at 15% TMA and MA
bentonite showed maximum results.

2. Materials
2.1. Cement and Bentonite

OPC was used in this work as a main binder following [13]. Bentonite is a siliceous
and aluminous pozzolanic substance in powder form and the existence of moisture chemi-
cally reacts with calcium hydroxide (CH) at normal temperatures to make cementitious
compounds (CSH) as shown in Figure 1. Sodium bentonite clay taken from the KPK district
of Pakistan was used for the experimental work. The bentonite clay used as a pozzolana
satisfied the requirements of [14]. To achieve the desired properties with a higher amount
of fines, viscocrete, a widely viable high-range water reducing admixture, was used.
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Figure 1. Bentonite (ground).

Fine Aggregates and Coarse Aggregates

For fine aggregate, sand from the Lawerncepur (Karachi, Pakistan) quarry was used.
Margalla hill crush up to 20 mm maximum size was used to make the self-compacting
concrete flowable and workable.

2.2. Bentonite Activation Techniques Used
2.2.1. Activation of Bentonite through Mechanical Process (Grinding)

The bentonite used was first oven-dried at 100 ◦C for 24 h. Grinding of bentonite was
performed with a Los Angeles abrasion apparatus for overall 4500 revolutions for a 5 kg
sample batch to continue for its uniformity. After the grinding process, sieving was carried
out by sieve number 325 to check its wet passing and it was protected in a plastic bag to
prevent wetness.

2.2.2. Thermal Activation of Bentonite (Heating)

A furnace was used for the thermal treatment of bentonite. Oven-dried bentonite was
placed in the furnace for 3 h at 800 ◦C. A sample of 5 kg was placed for heating to maintain
uniformity and achieve the targeted limit. After 3 h the furnace was allowed to reach room
temperature, which usually takes 5 h. During this time, the clay remained in the furnace.
The same process was repeated to obtain the required amount of bentonite. To protect it
from moisture, the cooled bentonite was packed into plastic bags.

2.3. Mix Proportions

Ten mixes were prepared to evaluate the rheological, hardened, and durability charac-
teristics of self-compacting concrete in this research. The compositions of the mixtures with
their nomenclature are listed in Table 1. For both thermo-mechanical activation (TMA) and
MA, cement was replaced with bentonite by the same percentages by mass of 5%, 10%, 15%,
20%, and 25%. Due to the incorporation of very fine bentonite, the cement’s surface area
increased and required a large amount of free water for wetting, and therefore different
percentages of superplasticizer (SP) were used to obtain the targeted domain of workability.

Table 1. Mixture proportions for SCC.

Mix
Description W/Binder Water Used

(kg/m3)
Cement
(kg/m3)

Bentonite
(kg/m3)

Fine AGG
(kg/m3)

Coarse AGG
(kg/m3) SP-(%)

5B-TMA 0.40 201.30 446.11 23.48 906.22 802.14 0.8
10B-TMA 422.63 0.8
15B-TMA 399.15 70.44 0.9
20B-TMA 375.67 93.92 0.9
25B-TMA 352.19 117.4 1.1

5B-MA 0.40 201.30 446.11 23.48 906.22 802.14 0.8
10B-MA 422.63 0.8
15B-MA 399.15 70.44 0.9
20B-MA 375.67 93.92 0.9
25B-MA 352.19 117.4 1.1
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3. Results and Discussion
3.1. Fresh Properties of SCC
Slump Flow

Figure 2 shows the slump flow variation for SCC with different percentages of both
TMA and MA bentonite that show similarity. This figure illustrates that slump flow de-
creased as the addition of bentonite increased but the slump achieved for all mixes remained
between 693 and 745 mm, which is categorized as SF2 defined by the EFNARC. The Figure 3
indicated the slump flow result. With the addition of SCMs, material flowability decreased,
whereas it was maintained using SP addition. The addition of minerals to the concrete
utilized a large portion of superplasticizer, and as a result of the quantity of superplasticizer
the dispersion and deflocculating of cement grains will be precipitated partially by the
application of minerals [15].
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This observation is similar to the finding that with the increase in the amount of
bentonite, the slump decreases, which requires a larger quantity of water as compared
to OPC due to its large surface area of particles [16]. The slump flow diameter for 15%
replacement was larger than the others. This might be due to the optimum quantity of fines
that helps to deform to a larger extent; however, with the increase of bentonite quantity, the
slump flow diameter decreased.

3.2. Mechanical Properties
3.2.1. Compressive Strength

The compressive strength at 7, 28, and 56 days for SCC made with TMA and MA
bentonite is described in Figure 4. The compressive strength of substitution of TMA
bentonite at an early age of 7 days showed similar results from 5B-TMA to 25B-TMA
bentonite. Due to thermo-mechanical activation treatment of pozzolana, silica components
become more active and react with the CH liberated due to hydration of cement in the
presence of water. During this reaction, strength development is normally slow and the heat
of liberation is lower. Furthermore, it consumes more lime rather than producing it, which
has a considerable impact on durability characteristics of hcp in an acidic environment.
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Strength may be enhanced as indicated by research, which found that strength development
is often slow at an early age [17]. The compressive strength at 15% MA bentonite was
comparable to 25% TMA bentonite. Figure 5 shows the breaking of specimens.
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However, TMA bentonite substitution showed higher strength than MA bentonite.
At 15% addition of TMA, the maximum result was found at 7, 28, and 56 days. The
compressive strength of SCC reduced significantly as the bentonite addition increased from
20% to 25% for both MA and TMA for all ages of 7, 28, and 56 days.

3.2.2. Split Tensile Strength

The reasonable tensile strength of the sample can be estimated by the splitting tensile
strength test based on its splitting failure pattern. Figure 6 shows split tensile results for all
10 mixes at 7, 28, and 56 days.

Eng. Proc. 2022, 22, 17 6 of 9 
 

 

3.2.2. Split Tensile Strength 
The reasonable tensile strength of the sample can be estimated by the splitting tensile 

strength test based on its splitting failure pattern. Figure 6 shows split tensile results for 
all 10 mixes at 7, 28, and 56 days. 

 
Figure 6. Split tensile strength outcomes. 

A very similar trend was observed in compressive strength at 28 and 56 days. The 
split tensile result at 25% TMA bentonite was comparable to 15% MA bentonite substitu-
tion. At 56 days, the tensile strength of 15B-TMA was 6.5% higher than that of the 15B-
MA mix, which means that TMA bentonite shows noteworthy improvement over MA, 
which indicates an increased reactivity of clay in pozzolanic reaction. TMA might be more 
sensitive to silica to react with CH [17]. The split strength of 25B-TMA at 56 days was 
reduced to 5.5%, whereas at 20% replacement the strength at 28 days was higher than at 
56 days. This might be due to the filling effect of residual clay minerals that offers re-
sistance to compression at a higher level but gives minimal resistance to failure for split-
ting tension. Thus, splitting tensile strength reduces at a higher level of substitution for 
both cases. 

3.3. Durability Characteristics 
3.3.1. Water Absorption Test 

The water absorption (WA) test is a useful principle to measure the porosity of con-
crete in contact with water. Numerous harmful chemicals can penetrate into concrete due 
to voids in the concrete, react with its ingredients, and alter its material properties. The 
results of water absorption for all mixes of SCC at 7, 28, and 56 days are given in Figure 7. 

An increasing trend was observed with the increase of bentonite percent for all of the 
mixes. 15B-TMA showed 8% higher water absorption than 15B-MA, which illustrates the 
reactivity of the substituent increase due to the thermal process. A similar behavior was 
observed for 25% replacement of TMA bentonite, which was 14% lower than MA benton-
ite. The overall trend for all mix proportions remained an increase with the increase of 
substitution level. 

Figure 6. Split tensile strength outcomes.



Eng. Proc. 2022, 22, 17 6 of 8

A very similar trend was observed in compressive strength at 28 and 56 days. The split
tensile result at 25% TMA bentonite was comparable to 15% MA bentonite substitution.
At 56 days, the tensile strength of 15B-TMA was 6.5% higher than that of the 15B-MA
mix, which means that TMA bentonite shows noteworthy improvement over MA, which
indicates an increased reactivity of clay in pozzolanic reaction. TMA might be more
sensitive to silica to react with CH [17]. The split strength of 25B-TMA at 56 days was
reduced to 5.5%, whereas at 20% replacement the strength at 28 days was higher than at
56 days. This might be due to the filling effect of residual clay minerals that offers resistance
to compression at a higher level but gives minimal resistance to failure for splitting tension.
Thus, splitting tensile strength reduces at a higher level of substitution for both cases.

3.3. Durability Characteristics
3.3.1. Water Absorption Test

The water absorption (WA) test is a useful principle to measure the porosity of concrete
in contact with water. Numerous harmful chemicals can penetrate into concrete due to
voids in the concrete, react with its ingredients, and alter its material properties. The results
of water absorption for all mixes of SCC at 7, 28, and 56 days are given in Figure 7.
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An increasing trend was observed with the increase of bentonite percent for all of
the mixes. 15B-TMA showed 8% higher water absorption than 15B-MA, which illustrates
the reactivity of the substituent increase due to the thermal process. A similar behavior
was observed for 25% replacement of TMA bentonite, which was 14% lower than MA
bentonite. The overall trend for all mix proportions remained an increase with the increase
of substitution level.

3.3.2. Acid Attack

Concrete structures are subjected to an acidic environment susceptible to deterioration
when acid-mixed water penetrates into concrete. Gypsum is produced by the reaction
of sulfate ions with portlandite and reacts with aluminate hydrate to produce a sulfo-
aluminate by-product. The internal pressure produced causes the concrete to swell. Due to
swelling, the soft and mushy mass produced deteriorates the surface of the concrete sample.

Therefore, it is necessary to handle the amount of CH to minimize the reaction with
H2SO4 [18]. Sulfuric acid, H2SO4, was used to create an acidic environment for all mixes.
The mass loss percentage for all mixes at 28 days and 56 days is shown in Figure 8. An
abundant amount of CaO content is present in OPC, and on the other hand, bentonite
contains a large amount of SiO2 and Al2O3 [19]. Therefore, raising the amount of TMA/MA
bentonite results in a reduction in CH level. It was observed that the TMA mixes offered
more resistance to acidic attack than the MA bentonite mixes. TMA/MA also fills the
pore spaces of concrete, preventing the penetration of SO4

−2, which might be a source



Eng. Proc. 2022, 22, 17 7 of 8

of deterioration of concrete. The overall trend of the findings shows that the addition of
TMA/MA bentonite significantly improved the H2SO4 resistance. Comparative analysis
shows that the loss of mass in SCC was 3% to 4% lower than traditional concrete, which
might be due to more fines and less porosity, forming a compact bound [20].
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4. Conclusions

Following are the conclusions of this research work:
Fresh properties of SCC were decreased as the substitution level of bentonite content in-

creased for both TMA and MA treatments of bentonite. However, the range for slump flow
remained within the targeted domain recommended by the EFNARC for SCC production.

At 28 and 56 days, mechanical characteristics—compressive strength and split tensile
strength—for both cases were at a maximum with 15% replacement of bentonite, which was
comparable at 25% replacement level of (MA) mechanical activation bentonite. The overall
significant positive impact was observed on durability qualities—water absorption and
resistance to acid attack (H2SO4). Both mixes showed better results up to 15% replacement.
TMA bentonite mixes showed considerably better results than MA bentonite mixes for the
replacement with OPC due to their improved reactivity.
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