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Abstract: Millimeter wave (mmwave) is a potential technology to cater to the data requirements
of future cellular networks through its wider spectrum and directional beamforming. With such
directional communication, exact alignment of communicating beams is crucial. In this paper, the
directivity gains with an antenna model having a Gaussian main lobe is used and the impact of
beam alignment error due to random movement of the user are investigated on the uplink system
performance of mmwave cellular network. Using stochastic geometry, we have derived Signal-to-
Interference-plus-Noise Ratio (SINR) coverage probability. Numerical results show that an optimal
number of base station beams exist that maximizes coverage probability at different user velocities
and cell radii.
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1. Introduction

To meet the capacity requirements of an evolving cellular network, channel measure-
ments have demonstrated the potentials of an mmwave spectrum. The smaller wavelength
at mmwave facilitates implementing highly directional steerable antennas with array gains
that can mitigate the peculiarities at this band, such as increased path loss, sensitivity to
blockages and other-cell interference. In order to achieve the maximum directivity gains,
the base station (BS) and user equipment (UE) beams need to be perfectly aligned, but
the increased directionality may incur beam misalignment errors [1,2]. This experiment
demonstrates that a system operating at a beam misalignment of 18◦ reduces the link
budget by about 17 dB and throughput by up to 6 Gbps or may completely break the
connectivity [3].

Considerable research to analyze the performance of mmwave cellular networks ex-
ploiting directionality with perfect beam alignment can be found in the literature [4] and
references therein, while limited work considers imperfect beam alignment. In practice, if
the angle-of-arrival estimation of incoming signal is not accurate, the devices will not be
able to steer their main beams accordingly, leading to imperfect beam alignment. Therefore,
it is important to incorporate beamsteering errors into the analysis, and practical mmwave
systems rely on beam management procedures [5,6]. Several works that demonstrate the
effect of beam misalignment on the coverage probability (CP) performance of downlink
mmwave cellular networks are presented in [7–9]. Other works to determine optimal
beamwidth in the presence of beam misalignment that maximizes system throughput and
transmission capacity are reported in [10,11]. In addition, mobility-based beam misalign-
ment errors also reduce the received signal strength at UE, which may lie within the side
lobe of the previous beam selected during synchronization signal burst (SSB) [6].

In this work, we consider multi-beam transmission and incorporate beam alignment
error due to UE mobility in the uplink mathematical model of mmwave cellular systems.
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Our results show that there exist an optimum number of BS beams that maximize coverage
probability at different UE velocities and cell radii. Moreover, an increased number of beams
at UE is found to give the best coverage performance due to increased beamforming gain.

2. System Model

We consider a single-tier outdoor mmwave network with BSs and UE distributed in R2

according to Poisson point process (PPP) of density λ and λU , respectively. Random-sized
rectangular buildings are independently distributed according to another PPP. The analysis
is conducted for a typical UE that randomly moves in a straight line with velocity υ m/s.
It is assumed that a UE always associates with the BS in LOS with minimum path loss.
Universal frequency reuse is assumed across the network with λU >> λ, and each BS has
at least one active user to serve at any time. The blockages cause the path length between
typical UE and serving BS to be either line-of-sight (LOS) (unblocked path) with probability
PLOS or non-LOS (blocked path) with probability PNLOS. Different path loss exponents
αL, αN and path loss intercepts, CL, CN , are applied to each LOS and NLOS links according
to the following functions [12]:

l(r) =

{
CLr−αL with probability PLOS(r) = e−βr

CNr−αN with probability PNLOS(r) = 1− e−βr (1)

where β is the blockage parameter that depends on the length and width of the building.
The channel fading follows independent Nakagami distribution with the parameters

for LOS and NLOS links denoted by NL and NN , respectively. The antenna gain is param-
eterized by the Gaussian main lobe profile [13], and both the BS and UE are capable of
random directional beamforming with 2n and 2k beams, respectively, where {n, k} ∈ N
are integers. The corresponding beamwidths for BS and UE are given as θn = 2π/2n and
θk = 2π/2k. The gain of the antenna main lobe and side lobes for BS and UE depends upon
the number of beams and is given by following expressions:

GBS,n(φ) =

{
Go,nexp

(
−ηφ,n.φn

2) |φn|≤ θn
gn otherwise

(2)

GUE,k(φ) =

{
Go,kexp

(
−ηφ,kφ2

k

)
|φk|≤ θk

gk otherwise
(3)

where ηφ,N = 2.028 ln(10)/θ2
N , φN represents the antenna’s angle relative to its bore-sight

direction ∈ [−π, π]. The maximum main lobe gain and the side-lobe gain are given by
Go,N = π102.028/(42.64 φ + π) and g = 10−2.028 Go, respectively. The probability of beam
alignment error at BS due to UE mobility is proposed in [6] as PBS

bm = 1− exp(−υτ2n
√

λ/π).
Similarly, the probability of beam misalignment at the UE’s side is given by PUE

bm = 1−
exp(−υτ2k

√
λ/π). The total gain of the desired link (i.e., from typical UE to typical BS) is

given by

Go =



Go,nGo,k with probability (1− PBS
bm )(1− PUE

bm )

Go,ngk with probability (1− PBS
bm )(PUE

bm )

gnGo,k with probability (PBS
bm )(1− PUE

bm )

gngk with probability (PBS
bm )(PUE

bm )

(4)
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The interfering UEs have independent and uniformly distributed beam directions
over [0, 2π]. The total gain on the interfering links is a discrete random variable whose
distribution is given by

GZ =



Go,nGo,k with probability
(

θnθk
4π2

)
Go,ngk with probability

(
θn
2π

)(
1− θk

2π

)
gnGo,k with probability

(
1− θn

2π

)(
θk
2π

)
gngk with probability

(
1− θn

2π

)(
1− θk

2π

)
(5)

3. Analysis of SINR Coverage Probability

SINR coverage probability is given by Pc(T) = P[SINR > T]. Given that the link
between typical UE and reference BS is LOS, the received SINR at BS at a random distance
r is

SINR =
|h0|2G0,nG0,kl(r)

σ2 + ∑z∈I |hz|2Gzl(Dz)
(6)

|ho|2Go,nGo,kl(r) is desired signal power, σ2 is the noise power, z denotes the interfering
UE, and ∑z∈Φz |hz|2HzGzl(Dz) is the aggregate interference power. The obtained expression
for coverage probability is given below,

Pc(T) =
4

∑
g=1

Go

NL

∑
n=1

(−1)n+1
(

NL
n

) ∫ ∞

0

e(−µLσ2) ∏
i∈(LOS,NLOS)

LI(µL)

 fR(r)dr (7)

µL = ηLnT/(GoCLr−αL) and fR(r) are the distribution of the distance (r) between UE
and LOS serving BS [12],

fR(r) = 2πλrPLOS(r)exp

(
−2πλ

∫ (CNrα L/CL)
1/αN

0
uPLOS(u)du

)
exp

(
−2πλ

∫ (CNrα L/CL)
1/αN

0
u(1− PLOS(u))du

)
(8)

The Laplace transform (LT) of interference can be obtained using the similar steps
used in our previous work [14]. The derived expression for LT for s ∈ {LOS, NLOS} is
given below:

LIs(µL) = exp

(
−2πλ ∑

G∈Gz

PGz

[∫ ∞

r

(
1− 1

(1 + µLGzCst−αs)NL

)]
Ps(t)tdt

)
x (9)

4. Numerical Results and Discussion

In this section, we solve the derived expressions numerically using MATLAB according
to the system parameter listed in Table 1.

In Figure 1, we analyze the impact of varying cell radii (rc) and υ for different n. It is
observed that for both rc = 50 and 100 m, as n increases, the beamforming gain is increased
and the interference at BS is decreased (due to narrow beamwidth). Hence, CP improves
initially and reaches a maximum value, giving an optimum number of beams. However,
with a further increase in n, the probability of beam misalignment at UE increases, and
hence CP decreases. It can be noted that the optimal n required at higher rc is lower
compared to that required for lower rc, which represents a dense network with more
interference, hence requiring more beams. Additionally, with the increasing υ, the beam
misalignment probability of UE as well as the beam (re)selection and BS handovers are
increased. Hence, an increasing υ decreases the optimum value of n and for a given n, the
CP decreases.
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Table 1. Parameters for numerical analysis [6,12].

Notation Parameter Value

fc Frequency 28 GHz
B channel bandwidth 500 MHz
σ2 noise power −77 dBm/Hz
NL Nakagami fading parameter 3
αL path loss exponent 2
CL path loss intercept 61.4 dB
β blockage parameter 0.0071
τ SSB periodicity 20 ms
υ UE velocity [3, 30, 120] km/h
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Figure 1. Impact of cell radius and UE velocity on SINR coverage probability for different BS beams.

In Figure 2, we compare the UE with multiple beams k = 2 and 4 with a single beam
UE, i.e., k = 1. It can be seen that an increased UE beam at k = 4 provides the best CP
due to increased beamforming gains, even though at increased k the probability of beam
misalignment at the UE is increased. However, when k = 2, as n increases, a small gain in
CP performance is obtained as compared to a single beam due to the overhead associated
with the SSB measurement of multiple beams.
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5. Conclusions

In this paper, we analyze the impact of multiple beams and beam misalignment
error due to UE random movement on the uplink CP of mmwave cellular network. We
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derive mathematical expressions for SINR CP to determine the effect of BS and UE beams,
probability of beam misalignment, UE velocity and cell radius. The results demonstrate
that an optimum BS beam exists that maximizes CP at different UE velocities and cell
radii. Moreover, increasing the number of beams at UE is found to have the best coverage
performance due to increased beamforming gain.
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