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Abstract: Herein, we numerically elucidate the effect of varying surface recombination velocity
(Srv) at the front and back metal contact on the device performance for our reported lead-free
formamidinium tin triiodide (FASnI3) perovskite solar cell. The Srv is generally contemplated as
a trivial non-radiative recombination loss factor but determinately impacts the characteristics of
the solar cell. Given that, we simultaneously varied the Srv at the back and front metal contacts
in the range of 1× 101–1× 107 cm/s. Such values for Srv can be realized by ideally passivating
the perovskite film and with passivated perovskite films or metallic contact resistive nature. It was
inferred that at Srv of 1× 107 cm/s, the device efficiency was 21.24% and was steeply increased to
21.42% after decreasing the Srv rate to 1× 101 cm/s, revealing that recombination losses are enhanced
at a higher Srv rate because of increased carrier recombination at the defect surface, thereby reducing
the efficiency and overall performance of the solar cell.

Keywords: perovskite solar cell; surface recombination velocity; device performance; numerical
investigation

1. Introduction

Among emerging photovoltaic technology, solar cells based on perovskite material
(materials of the type ABX3) have attracted enormous attention due to their favorable
optoelectronic properties, low fabrication cost, and potential of attaining high efficiency
(η) except the downside of stability [1–3]. The state of the art lab-scale fabricated α-FAPbI3
perovskite solar cell characterized by pseudo halide engineering holds the encouraging
η ∼ 25.6% [4]. Apart from this, non-radiative recombination losses are inevitable in solar
cells and more readily emerge in perovskite solar cells due to the ionic nature of perovskite
material [5].

Here, we focused on discussing the impact of surface recombination velocity (Srv)
(one of the non-radiative recombination losses) for the perovskite solar cell. Srv is the
rate at which excess minority carriers recombine at the surface (or interface) analogue
to the minority carrier lifetime in the bulk of the semiconductor layer [5]. High Srv and
low minority carrier lifetime are combined to reduce the carrier collection probability and
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decline the η [5,6]. The device needs careful optimization in relation to these factors to
achieve desirable output characteristics.

Various studies, including numerical and practical investigations, have explored the
impacts Srv on the output electrical characteristics, the carrier lifetime, the diffusion length,
the collection probability of carriers, and the recombination rate of the solar cells [5–13]. We
hereby focused on finding the degree to which Srv influences our recently reported FASnI3
perovskite solar cell [14], wherein we detailed in-depth investigation on the effect of defect
density, grain boundaries, and gradient doping on the performance of the solar. Further
details to ascertain the likely impact of Srv for the perovskite solar cell are comprehensively
provided in this study in the subsequent sections.

2. Materials and Methods

We employed a SCAPS-1D environment to perform drift–diffusion simulations for
investigating the Srv influence on device characteristics. The perovskite solar cell is the ar-
chitecture of FTO-etched glass/graphene nano-composites doped with TiO2/FASnI3/Spiro
OmeTAD/Au back metal contact, as depicted in Figure 1a. The material parameters for
the simulation can be obtained from the [14]. The device has an open-circuit voltage
(Voc) of 0.984 V, a short-circuit current density (Jsc) of 30.235 mA/cm2, a fill factor (FF)
of 74.07%, and η of 21.24%. The current–voltage characteristics of the solar cell under
AM 1.5G one-sum illumination conditions are depicted in Figure 1b, while the external
quantum efficiency is shown in Figure 1c. For investigating the Srv, we assumed that Srv
is identical at the front and back metal contacts. This assumption is in line with practical
realizations [7]. The Srv was varied in the range of 1 × 101–1 × 107 cm/s. The lower
values of Srv can be perceived for the encapsulated and passivated perovskite solar cell,
while un-passivated perovskite solar cells usually exhibit higher Srv values [15]. Further, it
was noticed that devices with metallic contact generally exhibit Srv > 1× 105 cm/s. This
study covers all these scenarios and discusses the impact of Srv on the output character-
istics, generation–recombination profiles, and quantum efficiency of the solar cell in the
later sections.
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3. Results and Discussion
3.1. Surface Recombination Velocity Effect on Current–Voltage Characteristics

As discussed earlier, Srv is the rate at which excess minority carriers recombine at the
surface. The mathematical expression relating Srv, surface recombination rate (Rsrv), excess
minority carriers (∆n or ∆p), and carrier lifetime (τ) are given by Equation (1) [15]. This
tells us that an increase in Srv results in increased Rsrv, reducing the carrier lifetime as well
as the diffusion length according to Ld =

√
D× τ [16], wherein Ld = the diffusion length

and D = the diffusion coefficient. Further, the relationship between Jsc and Ld and Voc and
Ld, can be given by Equations (2) and (3), respectively [16,17]. In summary, the relation
among these implications can be related as Srv ∝ Rsrv ∝ 1

τ ∝ 1
Ld

∝ 1
Jsc

∝ 1
Voc

.

Srv =
Rsrv

∆n
=

1
τn

or Srv =
Rsrv
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Jsc ≈ qGLd (2)
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)
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i
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(3)

In the above expressions, q = the charge, G = the illumination, ni = the intrinsic carrier
concentration, N = the majority carrier dopant concentration, T = the room temperature
in Kelvin, and KB = the Boltzmann constant. The current–voltage curves for varying Srv
values from 1× 101 − 1× 107 cm/s for the perovskite solar cell are illustrated in Figure 2a.
It can be observed that a decrease in Srv values enhanced the maximum voltage/current
points, Voc and Jsc, of the perovskite solar cell. Figure 2c provides further detailed insight
on output parameters extracted from the current–voltage curves shown in Figure 2a. At
Srv = 1× 107 cm/s, Voc and Jsc were 0.948 V and 30.235 mA/cm2, respectively, and were
noticeably improved to 0.9505 V and ∼30.485 mA/cm2 as Srv dropped to 1× 101 cm/s.
The maximum FF was obtained at Srv of

(
1× 105 = 1× 107) cm/s. Further, η was 21.24%

at 1× 107 cm/s and steeply increased to 21.42% as we decreased the Srv to 1× 101 cm/s.
The improvement in device parameters on lowering the Srv corroborates the mitigation of
dangling bonds (or the breakdown of the atomic lattice to prompt defect states in energy
levels) at lower Srv values and vice versa [12–15].
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Figure 2. Impact of varying surface recombination velocity on the (a) current–voltage curves;
(b) open-circuit voltage and short-circuit current density; and (c) fill factor and efficiency of the
solar cell.

3.2. Surface Recombination Velocity Effect on Generation/RecmobinationRate

The deterministic impact of Srv on the generation–recombination profile for the per-
ovskite solar is illustrated in Figure 3. The total carrier generation rate (Gt) across all the
layers was ∼1.68× 1024 cm−3s−1 and was the same for all Srv rates. This is because the
carrier generation rate is primarily dependent on the incident light intensity. However,
the total carrier recombination (Rt) was highest when Srv was 1× 107 cm/s and decreases
alongside the set minimum boundary value for Srv. The Rt was ∼2.818× 1023 cm−3s−1,
∼2.811× 1024 cm−3s−1, ∼2.787× 1024 cm−3s−1, and∼2.784× 1024 cm−3s−1 at Srv values
of 1× 107 cm/s, 1× 105 cm/s, 1× 103cm/s, and 1× 101 cm/s, respectively. This is because
with the increase in Srv, the minority carrier lifetime and diffusion length decrease due to
the emergence of defect states, thereby increasing the recombination rate of the carriers and
vice versa [15–17].
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Figure 3. Impact of varying surface recombination velocity on the generation–recombination rate of
the solar cell.

3.3. Surface Recombination Velocity Effect on External Quantum Efficiency

The external quantum efficiency as a function of incident light wavelength for the
perovskite solar cell is also observed to be influenced by the variation in Srv, as shown
in Figure 4. It can be noticed that the device quantum efficiency profile improved as we
decreased the Srv from 107–101 cm/s. The prominent difference in the quantum efficiency is
easily noticeable for the wavelengths≥ 300 nm and <360 nm. The quantum efficiency at the
inception (at an incident light wavelength of 300 nm) was ∼13.3% and 18.9% for Srv values
of 1× 107 cm/s and 1× 105 cm/s, respectively. The quantum efficiency unprecedently
enhanced to ≥79% as Srv decreased beyond the 1× 103 cm/s. This is because the quantum
efficiency of the solar cell is highly deterministic on the proportion of light being transmitted
(and absorbed) or reflected from the surface of the solar cell [8]. In the current context,
the decrease in quantum efficiency at higher Srv values can be related to the inability of
perovskite solar cells to harvest incident photons because of inappropriate surface texturing
and defects at the interface of metal contacts and perovskite film [5,15–17].
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4. Conclusions

The computational investigation demonstrated that Srv can strongly influence the
carrier generation–recombination rate, quantum efficiency, power conversion efficiency,
and overall device performance. Higher Srv results in reduced increases in the carrier
recombination before collection at the respective contacts, as well as decreased quantum
efficiency of the solar cell, and vice versa. The η of the device is enhanced to 21.42% from
the reported 21.24% on decreasing the Srv from 1× 107 cm/s and 1× 101 cm/s, respectively.
So, the adverse effects of Srv can be controlled by carefully passivating the surface (and
interface) and the synthetization of reduced defect perovskite films.
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