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Abstract: In electrical power systems, the popularity of the microgrid is significantly increasing
because of its remarkable advantages. However, the microgrid often exhibits protection problems
and seriously affects the reliability of power system. Hence, a proper protection strategy is extremely
necessary to solve the protection issues. Therefore, this manuscript proposes a protection strategy
against the faults in microgrids using a wavelet packet transform and data mining classifier. MAT-
LAB/SIMULINK and Python are used to investigate the proposed scheme performance. It was found
that the proposed technique can detect and classify different types of faults for the islanded and
grid-associated modes of the microgrid.

Keywords: data mining; fault protection; microgrid; wavelet packet transform

1. Introduction

Microgrid integration with traditional systems has enhanced the capability of the
modern power system to perform more efficiently. Microgrids reduce dependency on
conventional systems by providing uninterrupted power against the high load [1]. Despite
its immense advantages, it also produces implementation, operational, control, and pro-
tection problems [2,3]. One cause of the protection issue is that the traditional system is
usually radial with unidirectional (from source to consumers) power flow; however, in
the microgrid, power flows bidirectionally. The other reason for the protection problem is
associated with the fault current level. In grid-linked mode, the fault current is fed from the
main utility and distributed generators (DGs); hence, the fault current is relatively higher.
Conversely, in islanded mode, the fault current is low, as DGs in the microgrid are of low
capacity [4–7]. The difference in the operation and control of a microgrid with conventional
systems causes failures of overcurrent-based protection strategies. Thus, protection design
and operation are challenged [8,9].

The protection issues of a microgrid are addressed through different techniques in
the literature. In [10,11], the authors addressed the protection strategies by utilizing signal
processing and data mining techniques. A discrete wavelet transforms (DWT) combined
with an artificial neural network is proposed in [12]. A wavelet transforms (WT) and
decision tree-based methodology is described in [13].

Recently, most of the research has addressed data mining approaches. Hence, in our
proposed scheme, a combined signal processing and data mining technique is employed to
detect the fault in a microgrid and then determine its classification. The main objectives of
this study are as follows:

• To protect the microgrid using the wavelet packet transform (WPT) and data mining technique.
• To collect the input dataset by extracting the statistical indices of total harmonic

distortion (THD).
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• To validate the proposed technique’s effectiveness for both operating modes of the microgrid.

2. Proposed Technique

This study provides a solution to the protection issues by utilizing WPT and data
mining techniques. The proposed strategy block diagram is presented in Figure 1. First,
the sample voltage and current are preprocessed to calculate the THD through WPT. Then,
statistical indices (standard deviation, min, and max) of the THD are extracted to collect
the input dataset. Once the dataset is collected, it is fed to the random forest classifier to
develop the data mining model for fault detection and classification. While collecting the
dataset, several fault and no-fault (NF) aspects are considered to perform the simulation, as
shown in Tables 1 and 2 [11], for both operating modes and configurations of the microgrid.
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Table 1. Simulated fault cases.

Parameters Fault Details Numbers

Mode of operation Islanded or grid-associated 2
Topology Meshed or radial 2

Fault types AG, BG, CG, ABG, BCG, CAG, AB, BC, CA, ABC, ABCG 11
Resistance (Ω) at fault 0.01–100 10

Inception angle of fault 0◦ , 30◦ , 60◦ , 90◦ 4
Fault line DL1, DL2, DL3, DL4, DL5, 5

Total fault cases 8800

Table 2. Simulated NF cases.

Parameters Numbers

Mode of operation (Islanded or grid-associated) 2
Topology (Meshed or radial) 2

Switching of the capacitor (buses and PCC) 6
Load switching 6

DG1 and DG3 outage 2
Overall NF events 288

Wavelet Packet Transform

In DWT, the decomposition of an obtained signal is in non-uniform frequency bands.
However, for the analysis of harmonics, it is good to evaluate uniform frequency sub-bands
which can be obtained through WPT. The main difference between the WPT and DWT is
the decomposition process. In DWT, after the first level, either approximation or detailed
coefficients are used for further decomposition, whereas in WPT, after the first level, both
detailed and approximation coefficients are decomposed to extract the fault information.
Hence, through WPT, more fault information can be gathered compared to DWT. The
decomposition of a signal y[m] is given as:

y[m] = ∑
i∈Z

(
∑
j∈Z

Ai,j[m] + ∑
j∈Z

Di,j[m]

)
, (1)
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where Ai,j[m] and Di,j[m] represents the approximation and detailed coefficients decom-
posed at i level, gained from

Ai+1,j[m] = ∑
j∈Z

(g[j]Ai[2m− j] + h[j]Ai[2m− j]), (2)

Dj+1,i[m] = ∑
j∈Z

(g[j]Di[2m− j] + h[j]Di[2m− j]), (3)

where g[j] and h[j] are the frequency bands for low-pass and high-pass filters.

3. Test System

Figure 2 represents the test system of the microgrid, modeled in the MATLAB/SIMULINK.
A 25 kV, 15 MVA, and 60 Hz grid is connected with a microgrid at the PCC through a
switch, which is used to change the operating modes either into grid-connected or islanded
mode. It contains one synchronous-based DG(DER4) of 7 MVA, with one 2 MVA (DGR2)
and two 3 MVA (DER1 and DER3) IIDGs. It comprised of five distributed sections (DL1,
DL2, DL3, DL4, DL5), with a 20 km line length. It contains six loads linked to each bus.
A 120/25 kV Dyn transformer connects the microgrid with the grid, and a 0.630/25 kV
transformer is used to connect all DG sources [11].
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4. Results Discussion

Figure 3 represents the flowchart of the proposed algorithm. Accuracy, precision, and
recall are the basic indices applied to find out the capability of the proposed strategy.

(1) To measure the dependability of the predicted and actual fault events for fault and
NF cases for the proposed technique, accuracy is considered as follows:

A =

(
ψ̂ +

=
ψ
)

T(
ψ + ψ

)
T

(4)

where ψ̂ and
=
ψ = predicted fault and NF events; ψ and ψ = actual fault and NF events.

(2) Precision gives the relation between the predicted and actual fault events, given as:

P =
ψ̂T
ψT

(5)

where ψ̂T = predicted fault events; ψT = actual fault events.
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(3) Recall precisely measures the predicted and actual NF events as follows:

R =

=
ψT
ψT

(6)

where
=
ψT = predicted NF events; ψT = actual NF events.
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4.1. Fault Detection

The study considered overall 9088 cases (8800 fault and 288 NF) for the detection of
faults in the microgrid. Here, 75% of the cases are considered for training and 25% for
testing to build the data mining model. The fault detection is performed by assuming two
different values for both of the cases, given as:

fault detection =

{
if 1, fault events
if 0, NF events

(7)

Figure 4 represents the fault detection confusion matrix. From the figure, it can be
observed that the proposed scheme randomly selected 2272 cases (70 NF, 2202 fault events).
The figure further shows that the proposed scheme accurately detected 2202 fault and 69
NF cases with an accuracy of 99.95%. The comparative analysis of the proposed technique
with DT and SVM is tabulated in Table 3. It is demonstrated in the table that the accuracy
of the proposed technique is 99.95% (with a precision level of 100%, and a recall level of
98.57%), whereas SVM has an accuracy level of 99.42% (99.68% precision and 91.43% recall),
and DT has an accuracy level of 99.56% (with a precision level of 99.72% and a recall level
of 94.28%). The comparative analysis can also be seen in Figure 5.
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4.2. Fault Classification

The next task after fault detection is the classification of the fault. For fault classification
while training, the values assumed are given as:

Fault Classification =


0 for SLG faults
1 for LL faults

2 for LLG faults
3 for LLLG faults

(8)

For fault classification, 75% of the cases are used for training and 25% for testing.
Figure 6 represents the confusion matrix for fault classification. From the figure, it can
be observed that the proposed scheme has arbitrarily considered 2200 fault cases. With
seven misclassifications, it has classified 596 SLG cases accurately. Further observation
shows that for LL faults it has accurately classified 582 cases, for LLG faults 590 cases, and
for LLLG faults 417 cases with 98.84%, 99.32%, 100%, and 99.05% accuracy, respectively.
Hence, this leads to an overall accuracy of 99.32%. Table 4 and Figure 7 show a comparative
analysis of the proposed scheme with DT and SVM. The comparative analysis verifies that
the proposed scheme can effectively classify the faults with 99.32% accuracy compared to
SVM and DT having accuracy levels of 97.78% and 98.27%, respectively.
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5. Conclusions

Microgrids cause many protection problems in power systems. Therefore, this scheme
proposes a fault protection solution by using wavelet packet transform and random forest-
based techniques. The proposed scheme is investigated in MATLAB to validate its perfor-
mance. The results indicate improved results over the existing data mining techniques.

Author Contributions: S.B. conceptualized the proposed protection scheme and drafted the original
article. S.Z.J. reviewed, edited the first draft and provided the resources and valuable comments
during the simulation process. S.A.R.S. revised the paper. All authors have read and agreed to the
published version of the manuscript.
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