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Abstract: Energy-efficient modes of transportation have become essential today due to environmental
challenges. However, utilities and decision-making bodies are reluctant to proceed in this direction
because of the expected system instability. This paper contributes to minimizing the cost incurred
due to energy losses in an IEEE-37 bus system integrated with a commercial electric vehicle charging
station (EVCS) located in Qatar. The Particle Swarm Optimization (PSO) algorithm is used for the
efficient location allocation of EVCS. The system is analytically examined through the Thukaram
Load Flow Algorithm and investigations are conducted to observe the beneficial impacts of load
balancing between RES and utility.

Keywords: electric vehicles; smart grid; cost minimization; renewable energy; metaheuristic algo-
rithm; particle swarm optimization algorithm

1. Introduction

The depletion of natural resources and the poisonous emissions from conventional
vehicles have a detrimental role in environmental pollution. The trend in the electrifica-
tion of the transport sector has grown substantially due to the augmented interest in the
replacement of fossil fuels [1]. However, this will cause an overwhelming surge in the
electricity demand. To prevent aggravation in this condition, imperative decisions must be
made for electric vehicle charging stations (EVCS) to ensure minimum impact on the power
grid and the environment [2]. This non-linear load not only impacts the voltage profile of
the existing distribution system but also deteriorates the power quality delivered to other
consumers in the system [3]. Therefore, this paper especially focuses on implementing the
Particle Swarm Optimization (PSO) algorithm to cater for this issue. Section 2 explains
the techniques developed to date to facilitate optimal planning and placement of EVCS.
Section 3 discusses the mathematical problem formulation and the constraints imposed,
whereas the results obtained after the implementation of PSO are evaluated in Section 4.

2. Literature Review

With the advent of electric vehicles (EVs), researchers have investigated in multi-
ple dimensions to modify the existing power system. Harries Hawk Optimization and
Teaching–Learning Based Optimization were implemented on the IEEE-33 bus and IEEE-69
bus systems to allocate EVCS in [4]. Likewise, Cuckoo Search Algorithm, Genetic Algo-
rithm and Simulated Annealing Algorithm were employed for photovoltaic (PV) systems
and EVs on an IEEE-33 bus system [5]. Furthermore, investigations were also conducted to
ensure profit maximization and cost minimization by employing hybrid Crow Search Algo-
rithm incorporated with a renewable energy source and battery energy storage system [6],
Artificial Bee Colony algorithm and Firefly algorithm [7]. Alongside multiple algorithms,
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research to date also encompasses cost-based models, primarily focusing on minimizing
investment cost [8], installation cost [9], charging cost [10] and penalties imposed for vi-
olating grid constraints [11]. Variations have also been observed in the work of various
researchers in terms of constraints, such as the restrictions on the SOC of battery [12] and
branch currents [12], along with equality and inequality constraints on the active and
reactive power in the system [13,14].

However, this paper integrates optimal planning of EVCS in an IEEE-37 bus system
with load balancing between the utility and solar PV system. A commercial, level 3, charg-
ing station in Qatar was considered, which has a minimum charging time of 20 min [15].
The load profile of this station is presented in Figure 1.
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Furthermore, for efficient cost minimization, a feasibility study on the solar resources
of Qatar was conducted. Maximum and minimum power outputs throughout the year were
analyzed through the PV Watts calculator from the National Renewable Energy Laboratory.
It was concluded that a solar PV system of 400 kW can bear 47.6% of the total load of this
EVCS. Therefore, this paper discusses three cases in total, summarized in Table 1.

Table 1. Summary of case studies.

Cases Considerations Analytical Aspects

Base Case Base Load on IEEE-37 Bus System Voltage Profile, Active Power Losses
Case I 100% additional load of EVCS Cost per unit of power loss, Voltage

Profile, Active Power LossesCase II 53% additional load of EVCS

3. Problem Formulation
3.1. Objective Function

The primary objective of this paper is to place the commercial EVCS at an optimal
location in the IEEE-37 bus radial distribution system, in accordance with the minimum
cost incurred due to energy losses. This is considered to be 0.092 USD/kWh [16]. Power
loss is calculated using Equation (1) [17].

Power loss = ∑|I|2R (1)

Equation (2) is used to find the energy loss in a day.

Energy loss =
Power loss

Time
=

∑|I|2R
24

(2)
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Since the cost incurred per unit of energy loss is 0.092 USD/kWh [16], the total cash
outflow for the power loss in a day is calculated using Equation (3). This objective function
is fed to the PSO algorithm to locate the most feasible location.

Total Cost = 0.092× ∑|I|2R
24

(3)

3.2. Constraint

Equation (4) shows that the voltage must lie within the range of ±5% [18].

0.95 ≤ V ≤ 1.05 (4)

4. Results

This section of the paper highlights the outcomes when the problem statement in
Section 3 was implemented using the PSO Algorithm. For better understanding, Section 4.1
discusses the effect of concentrated and distributed load in the IEEE-37 bus radial distribu-
tion system by employing the Thukaram Load Flow Algorithm (TLFA). In Section 4.2, the
optimal location for the commercial EVCS is determined.

4.1. Power Flow Analysis on IEEE-37 Bus System

The initial load on the IEEE-37 bus system encompasses all sorts of consumers, be
it residential, industrial, or commercial. [19]. The buses are not distinguished based on
the nature of the load while performing the preliminary load flow analysis using TLFA.
A mathematical model of the 37-bus system was developed in MATLAB R2018a. The
base apparent power and the base voltage of the system were assumed to be 100 MVA
and 12.66 kV, respectively. To ensure precision, the convergence criteria were defined
as 1× 10−4. The bus data and line data for the system were taken from [19]. Figure 2
represents the 37-bus system under consideration.
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However, while diving deeper into the research, these buses are classified according
to the nature of the consumer as residential, industrial, and commercial. Load flow analysis
(LFA) is performed once again to investigate the potential differences. Active load, reactive
load, node voltages, and branch currents were obtained as results after the analysis of
the system, with respect to concentrated load and load distributed into residential, indus-
trial, and commercial. Table 2 summarizes the results obtained by treating the load as
concentrated and then distributed.
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Table 2. Results from Power Flow Analysis.

Parameters Concentrated Load Distributed Load

Minimum Voltage 12.649 kV 12.649 kV
Active Power Losses 1.8 kW 1.8 kW

Reactive Power Losses 1.2 kVA 1.2 kVA
Voltage Profile 1.51 × 10−4 kV 1.51 × 10−4 kV

4.2. Optimal Location for Complete Electric Vehicle Charging Station Load

Load of the EVCS was then placed on a commercial bus in the IEEE-37 bus radial
distribution system using the PSO Algorithm. Here, the load of the EVCS was placed
according to the case studies proposed in Table 1. LFA is then performed on the system
and the bus, which provides the minimum value of the cost associated with energy losses,
allocated to the charging station. The PSO algorithm determined commercial Bus 19 to be
the optimal location in both cases.

Major changes in the fitness value of objective function were observed when the
commercial load of EVCS placed on Bus 19 in the system was reduced to 53%. The cost
incurred in the system due to energy losses can be observed in Figure 3. The difference
between the expenditures with and without the solar PV system account for a difference of
approximately 29%.
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Figure 4 represents that the voltage profile satisfies the constraint defined in Section 3.2.
It can be seen that the initial load on the IEEE-37 bus system was slightly unbalanced, as
the voltages fluctuate beyond the threshold. However, increasing the load on the optimal
bus improved the system’s voltage profile. On a further decrement in load, the fluctuations
in the voltage further reduced and indicate increased system stability.
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Figure 5 shows a spike in active power losses in the connecting branch of Bus 2 and 19
when the load of EVCS was placed on commercial Bus 19. These losses were then reduced
up to 70% when a solar energy system was incorporated.
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5. Conclusions

This paper considers the probable practical solutions that can be effectively imple-
mented while planning electric vehicle charging stations. The paper determined the most
suitable location to be allocated to a commercial EVCS by using the Particle Swarm Opti-
mization (PSO) algorithm. In the research, the total cost incurred due to energy loss was
minimized by 29% when load balancing was performed between the utility and solar pho-
tovoltaic system. Furthermore, a 70% decrease in power loss was observed by employing
the said technique. This paper successfully contributed to the financial gains of the utility
and the consumer, while maintaining the voltage stability of the system. The expenditures
were observed to reduce to a considerable extent, which can impact the cost per unit of
energy charged from the customers. The research plays a pivotal role in minimizing the
overhead charges because of the increase in power demand due to electric vehicles.
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