#
Design of a DC to DC Converter for a Residential Grid Connected Solar Energy System^{ †}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. System Design

#### 2.1. PV Design

^{−23}J/K); ${\mathrm{R}}_{\mathrm{Sh}}$ shunt resistance $\mathrm{T}\mathrm{is}$ temperature in Kelvin (K); ${\mathrm{V}}_{\mathrm{co}}$ is Voltage of open circuit; and $\mathrm{G}$ is irradiance in $\mathrm{W}/{\mathrm{m}}^{2}.$

#### 2.2. MPPT Algorithms

#### 2.3. Design of the Boost Converter

## 3. Result and Discussion

- P&O algorithm.
- PI controller + P&O algorithm.
- PSO Algorithm + PI Controller + P&O algorithm.

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Pakkiraiah, B.; Sukumar, G.D. Research Survey on Various MPPT Performance Issues to Improve the Solar PV System Efficiency. J. Sol. Energy
**2016**, 2016, 1–20. [Google Scholar] [CrossRef] - Rajamand, S. A novel sliding mode control and modified PSO-modified P&O algorithms for peak power control of PV. ISA Trans. 2022; in press. [Google Scholar] [CrossRef]
- Verma, D.; Nema, S.; Shandilya, A.M.; Dash, S.K. Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems. Renew. Sustain. Energy Rev.
**2016**, 54, 1018–1034. [Google Scholar] [CrossRef] - Rezk, H.; Hasaneen, E.-S. A new MATLAB/Simulink model of triple-junction solar cell and MPPT based on artificial neural networks for photovoltaic energy systems. Ain Shams Eng. J.
**2015**, 6, 873–881. [Google Scholar] [CrossRef] - Reisi, A.R.; Moradi, M.H.; Jamasb, S. Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review. Renew. Sustain. Energy Rev.
**2013**, 19, 433–443. [Google Scholar] [CrossRef] - Yusivar, F.; Tito, B. Solar Cell MPPT Technique Based on PI Controller. Adv. Mater. Res.
**2012**, 608, 89–96. [Google Scholar] [CrossRef] - De Brito, M.A.G.; Galotto, L.; Sampaio, L.P.; Melo, G.D.A.E.; Canesin, C.A. Evaluation of the Main MPPT Techniques for Photovoltaic Applications. IEEE Trans. Ind. Electron.
**2013**, 60, 1156–1167. [Google Scholar] [CrossRef] - Suryavanshi, R.; Joshi, D.R.; Jangamshetti, S.H. PSO and P&O based MPPT technique for SPV panel under varying atmospheric conditions. In Proceedings of the 2012 International Conference on Power, Signals, Controls and Computation, Kerala, India, 3–6 January 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Ishaque, K.; Salam, Z. A Deterministic Particle Swarm Optimization Maximum Power Point Tracker for Photovoltaic System under Partial Shading Condition. IEEE Trans. Ind. Electron.
**2012**, 60, 3195–3206. [Google Scholar] [CrossRef] - Bouksaim, M.; Krami, N.; Acci, Y.; Srifi, M.N.; Hadjouja, A. Modeling of photovoltaic module using maximum power point tracking controller. In Proceedings of the 2018 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Kenitra, Morocco, 21–23 November 2018; pp. 1–4. [Google Scholar]
- al Tarabsheh, A.; Akmal, M.; Ghazal, M. Series connected photovoltaic cells—Modelling and analysis. Sustainability
**2017**, 9, 371. [Google Scholar] [CrossRef] - Qu, H.; Li, X. Temperature dependency of the fill factor in PV modules between 6 and 40 °C. J. Mech. Sci. Technol.
**2019**, 33, 1981–1986. [Google Scholar] [CrossRef] - Putri, R.I.; Wibowo, S.; Rifa’I, M. Maximum Power Point Tracking for Photovoltaic Using Incremental Conductance Method. Energy Procedia
**2015**, 68, 22–30. [Google Scholar] [CrossRef] - Anto, E.K.; Asumadu, J.A.; Okyere, P.Y. PID control for improving P amp; O-MPPT performance of a grid-connected solar PV system with Ziegler-Nichols tuning method. In Proceedings of the 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, China, 5–7 June 2016; pp. 1847–1852. [Google Scholar] [CrossRef]
- Sahu, P.; Verma, D.; Nema, S. Physical design and modelling of boost converter for maximum power point tracking in solar PV systems. In Proceedings of the 2016 International Conference on Electrical Power and Energy Systems (ICEPES), Bhopal, India, 14–16 December 2016; pp. 10–15. [Google Scholar]
- Purushothaman, S.; Sattianadan, D.; Vijayakumar, K. Novel compact design high gain DC–DC step up converter applicable for PV applications. Sustain. Energy Technol. Assess.
**2022**, 51, 101720. [Google Scholar] [CrossRef] - Rashid, M.H. Power Electronics: Circuits, Devices, and Applications, 4th ed.; Pearson: Boston, MA, USA, 2014. [Google Scholar]
- Pradhan, A.; Panda, B. A Simplified Design and Modeling of Boost Converter for Photovoltaic Sytem. Int. J. Electr. Comput. Eng.
**2018**, 8, 141–149. [Google Scholar] [CrossRef]

Electrical Characteristics | Variables |
---|---|

Maximum Power | 250 W |

Number of cells | 60 |

$\mathrm{Current}({\mathrm{I}}_{\mathrm{mp}}$) | 8.4 A |

$\mathrm{Rated}\mathrm{voltage}({\mathrm{V}}_{\mathrm{mp}}$) | 29.8 V |

$\mathrm{Short}\mathrm{circuit}\mathrm{Current}({\mathrm{I}}_{\mathrm{SC}}$) | 8.9 A |

$\mathrm{Open}\mathrm{circuit}\mathrm{Voltage}({\mathrm{V}}_{\mathrm{OC}}$) | 38.3 V |

Electrical Variables | Values |
---|---|

Input voltage | 100–120 Vdc |

Output voltage | 240 Vdc |

Output current | 30 A |

Switching frequency | 5 kHz |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Elgbaily, M.; Anayi, F.; Elgamli, E.
Design of a DC to DC Converter for a Residential Grid Connected Solar Energy System. *Eng. Proc.* **2022**, *19*, 6.
https://doi.org/10.3390/ECP2022-12620

**AMA Style**

Elgbaily M, Anayi F, Elgamli E.
Design of a DC to DC Converter for a Residential Grid Connected Solar Energy System. *Engineering Proceedings*. 2022; 19(1):6.
https://doi.org/10.3390/ECP2022-12620

**Chicago/Turabian Style**

Elgbaily, Mohamed, Fatih Anayi, and Elmazeg Elgamli.
2022. "Design of a DC to DC Converter for a Residential Grid Connected Solar Energy System" *Engineering Proceedings* 19, no. 1: 6.
https://doi.org/10.3390/ECP2022-12620