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Abstract: Pharmaceutical industries widely use Escherichia coli cell strain to synthesize various target
products. The main goal is to reach the highest possible product yield. However, the formation of
by-products is inevitable throughout the cell growth stage. Metabolic compounds such as acetates
cause inhibition, particularly in later bioprocess stages. Therefore, the acetate accumulation model
is necessary for planning bioprocesses to maximize cell biomass growth. The decision tree method
was in possession to replicate the approach. Specific biomass growth at induction, broth weight,
oxygen uptake rate, and consumed substrate weight were the inputs of model training. Broth and
consumed substrate weight had additional aging-related information incorporated as separate inputs
to introduce the cumulative regularization.
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1. Introduction

Bioprocess data monitoring and control is one of bioengineers’ problematic and time-
consuming tasks. Bioprocesses have complex mathematical models, noisy, inconsistent
data, and complicated control systems [1,2]. Offline measurements are time-delayed,
require additional instruments, and are time-consuming. Developing soft sensors allows
for improving and optimizing the process by facilitating real-time data collection. Process
optimization leads to the primary goal of all pharmaceutical industries—to reach the
highest possible product yield.

Metabolic compounds such as acetates interfere with target product synthesis by
causing inhibition, particularly in later bioprocess stages. Furthermore, inhibition lengthens
the lag phase, leading to loss of biomass production and growth rate [3]. By-product
formation under aerobic conditions is mainly caused by the lack of dissolved oxygen
and the imbalance between glucose uptake and its conversion to biomass [4]. To better
understand these processes, real-time acetate estimation is necessary.

By-product estimation uses soft sensors that consist of numerous mathematical
models [5]. These models vary from mechanistic and data-driven empirical models to
hybrid models. Among the mechanistic models, the extended Kalman filter is one of the
most popular approaches [6]. The EKF results are firmly related to the accuracy of the
mathematical model. Therefore, hybrid models with data-driven subparts correct these
inaccuracies [7,8].

This study gives an E. coli by-product estimation model based on gathered offline data
with a black-box model. It discusses model inputs, their physical meanings, and the impact
of incorporating age-related information. The novelty of this study is the proposition that
off-gas analysis also carries information about the forming of by-products.
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2. Materials and Methods

Data used for model training originates from fed-batch E. coli BL21(DE3) pET21-IFN-
alfa-5 experiments. It consisted of 24 cultivation processes, some of which were with limited
feeding. The cultivation medium throughout the experiments consisted of 46.55 g KH2PO4,
14 g (NH4)2HPO4, 5.6 g C6H8O7·H2O, 3 mL of concentrated antifoam, 35 g H14MgO11S, and
105 gD (+) glucose monohydrate. The pressure and temperature of the system remained
constant. During the cultivation process, pure oxygen flow from 0 to 7.5 L/min was used
to increase the oxygen transfer rate in the bioreactor.

3. Development of a Black-Box Model for Acetate Estimation

Decision trees serve for data classification and continuous data prediction [9]. Decision
trees used in continuous data prediction are called regression trees. Later is used as a data-
driven model in making this estimator. MATLAB software was the model development
and data processing tool. Training and validation datasets were generated by dividing
the sampled data from the experiments. The training dataset consisted of samples from
18 cultivation experiments and a validation dataset of 6.

3.1. Input Selection

Previous studies showed that specific growth rate µ is one of the best descriptors for
estimating bioprocess parameters [10]. This parameter and oxygen uptake rate (OUR) carry
much information about the growth and life of the cell [11,12]. The latter is estimated using
a soft-sensor with off-gas information. The specific growth rate is expressed using OUR or
offline-sampled biomass concentration X:

µ =
1

OUR(t)
·dOUR(t)

dt
− 1

µ + β/α
·dµ

dt
, (1)

µ =
dX
dt

· 1
X(t)

, (2)

where α—oxygen consumption parameter for biomass growth and the parameter β for
maintenance. As an input, the specific growth rate is used only during the induction phase
of the process (µind). The value (µind) is calculated during the induction moment using
Equation (2) formula shown above. After the induction, new biochemical reactions start,
and the cells synthesize the target product [13]. During cultivations, substrate consump-
tion affects cell development, and its inconsistent feeding may lead to cell conversion
to metabolisms [14]. Substrate consumption and broth weight give model information
about biomass growth, and broth weight also gives information about the dilution effect of
substrate feeding. Additionally, broth and consumed substrate weight with supplemen-
tary aging-related information are separate inputs introducing the cumulative regulariza-
tion [10]. The selected inputs were (Table 1):

Table 1. Model inputs.

Time h

The specific growth rate during induction µind 1/h

Broth weight kg

Consumed substrate weight g

Oxygen uptake rate OUR g/(h·g)

Broth weight with age information kg/h

Consumed substrate weight with age information g/h
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3.2. Model Errors

Model parameters fitting was based on minimizing the errors. Errors were based on
measured and estimated acetates sums of squared residuals (RSS) and mean absolute error
(MAE) results

RSS =
n

∑
i=1

(A∗
i − Ai)

2, (3)

MAE =
∑n

i=1
∣∣A∗

i − Ai
∣∣

n
, (4)

where A∗
i is acetate i-th observation, and the value (Ai) is a black-box model acetate

estimate. The values RSS and MAE are shown with two different sets of inputs in Table 2.
The first set included time (µind), the OUR, broth and consumed substrate weights, and the
second set contained additional broth and consumed substrate weights with cumulative
regularization. As shown in Table 2, these additional inputs improved the results.

Table 2. Model errors with age-related info and without.

Inputs MAE RSS

Without age-related info 0.192 1.739
With age-related info 0.155 1.264

4. Results and Discussion

Model results show that the regression tree model is applicable for estimating E. coli
cell metabolic compounds in fed-batch cultivation. Figure 1 shows the difference between
measured and estimated acetate values. By comparing results from inputs with age-related
information (dark blue color) and inputs without age-related information (light blue color),
it is clear that introducing cumulative regularization improved by-product estimation.
These extra inputs resolved the errors in the first half of the bioprocess and smoothened the
big spikes in the second half of the process. After bioreactor inoculation, sudden spikes in
acetate estimation can be related to new biochemical processes. This phenomenon requires
further, more in-depth data analysis.
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On the other hand, comparing this model to the traditional EKF model’s lowest MAE,
the black box model estimation lowered MAE by approximately 5% [6]. Also, this study
used only two samples of biomass concentration, whereas EKF based model used biomass
observed once every 5 s. Additionally, experiments used for this model validation and
training contained data involving the induction. Such an event causes a disturbance for
bioprocess dynamics, making it more challenging to estimate acetates.

In the future, the proposed model will serve as feedback that can potentially improve
the quantity and quality of a synthesized product. Altering the main parameters responsible
for metabolic pathways such as substrate feed or/and oxygen transfer rate enhances the
growth and well-being of the cell. Bioprocess improvements lead to easier process control
and managing, providing a better workspace for future optimizations.

5. Conclusions

This study proposed an acetate estimator using the regression tree method. The
model training dataset consisted of eighteen cultivation experiments, and a dataset of six
cultivation experiments validated the chosen inputs and model parameters. The regression
tree model had the best results by using samples integrated with aging-related information,
and it achieved satisfactory results estimating acetates reaching MAE of 0.155 and RSS
of 1.264.
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