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Abstract: Production processes must allow high flexibility and adaptivity to ensure food supply.
This includes reacting to disruptions in the supply of ingredients, as well as the varying quality
of ingredients, e.g., seasonal fluctuations of raw material quality. Digital twins are known from
Industry 4.0 as a method to model, simulate, and optimize processes. In this vision paper, we describe
the concept of a digital food twin. Due to the variability of these raw materials, such a digital twin has
to take into account not only the processing steps, but also the chemical, physical, or microbiological
properties that change the food independent of the processing. We propose a model-based learning
and reasoning loop, which is known from self-aware computing (SeAC) systems in the so-called learn–
reason–action loop (LRA-M loop), for modeling the input for the LRA-M loop of food production,
not as a pure knowledge database, but data that are generated by simulations of the bio-chemical
and physical properties of food. This work presents a conceptual framework on how to include data
provided by a digital food twin in a self-aware food processing system to respond to fluctuating raw
material quality and to secure food supply and discusses the applicability of the concept.

Keywords: digital twin; food processing; Industry 4.0; self-awareness computing systems; artificial
intelligence

1. Introduction

The term Industry 4.0 refers to current technological changes in the environment
of industrial production enabled by advances in information technology. The focus of
Industry 4.0 is the smart factory, i.e., the connection of cyber–physical production systems
with Internet of Things (IoT) technology, as well as intelligent data analysis. A core element
of Industry 4.0 is the digital twin: a virtual model of a product, the machines, or the
production process created with data collected by sensors that enables simulations or
real-time analyses of the status of production. As a digital twin integrates real-time data, it
provides a detailed simulation model that can support decision-making.

The use of digital twins seems beneficial in food processing for various reasons.
The Coronavirus pandemic demonstrated the vulnerability of food supply resilience. To
ensure the supply of food, production processes must allow high flexibility and adaptivity,
which require traceability. The survey “Die Ernährung 4.0—Status Quo, Chancen und
Herausforderungen” (Nutrition 4.0—Status Quo, Opportunities and Challenges) by the
digital association Bitkom and the Federation of German Food and Drink Industries (BVE)
showed that 70% of the more than 300 companies surveyed in the food industry consider
end-to-end traceability from the origin of the goods to the customer to be an important
scenario for the current decade [1]. Various types of sensors exist to support this. However,
the potential is far from being exploited. Furthermore, product quality is influenced by
different quality levels of input materials. Especially in the case of seasonal fluctuations
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of this raw material quality, an adjustment of the parameters in the production process is
essential. Introducing new products that are related to existing ones is also a challenge in
food processing. Introduction processes of new products could be simplified by a digital
twin of already existing products. The digital twin is able to learn the correct process
parameters for production and is used as a knowledge foundation within a self-adaptive
system [2]. All those application scenarios show the potential of digital twins in the food
supply chain.

However, a digital twin of food production has additional specific requirements
compared to digital twins of the production of material goods. Due to the variability of
raw materials, these cannot be based only on the processing steps, but must also take into
account the chemical, physical, or (micro)biological properties of the food. This vision paper
aims to provide a concept that complements the typical, retrospective analysis of machine
and process data with short-term (detection of potential problems) and medium-term data
analysis approaches (planning and optimization), as well as product-related analysis for
achieving a proactive decision-making of adaptation in food production and tracking the
current state of production at any time. In contrast to common Industry 4.0 approaches,
this paper aims to include a product-related data analysis. While Industry 4.0 approaches
often focus on the analysis of machine data, this paper describes a product-related data
analysis as well. Such an analysis can be the foundation for an adaptive system that is
able to control the process, autonomously react to changes, and continuously improve its
performance through learning. Consequently, such a concept helps to better (i) understand
the behavior of a food production process, (ii) predict critical situations, and (iii) determine
a new plan.

The remainder of the paper is structured as follows. Next, Section 2 describes current
approaches in the literature. Afterwards, Section 3 presents our concept for a digital food
twin. Then, Section 4 discusses research challenges for the implementation of our concept.
Finally, Section 5 concludes this paper.

2. Materials and Methods

This section presents several approaches and concepts that we identified in the litera-
ture and that are relevant to the field of digital twins for the food processing industry.

Smart factory in the food industry. Current approaches in Industry 4.0 focus on the
intelligent collection of data with technology from the IoT and their analysis with machine
learning algorithms [3]. This includes a variety of data sources, including raw material
data, machine data, or customer data. In particular, production planning can be optimized
with machine learning in this context [4]. Another use case is predictive maintenance of
machines [5,6]. However, the focus is primarily on the view of the process and the machines.
Internal processes in the food industry are not included, and the view of the product is
limited to identifying products with bar or QR codes. Proactive adaptation improves
system performance as it forecasts adaptation concerns (e.g., through identification of
patterns in historical data) and reacts either by preparing an adaptation or adapting [7].
Real-time data of production sites would help to realize proactive adaptation and dynamic
adjustment when a disruption takes place.

Digital twins in the food sector. Digital twins can be classified into six types—(i) imag-
inary, which simulate reference objects, (ii) a digital twin, which monitors in real-time the
state and behavior of an object, (iii) predictive, which projects future states and behaviors
of an object, (iv) prescriptive and (v) autonomous digital twins (using artificial intelligence),
and (vi) a recollection digital twin with historical data [8]. However, there are still few
concepts for digital twins specialized for food processing. Further, in a recent review [9], we
showed that agri-food digital twins are limited to specific aspects (e.g., animal monitoring,
crop management, or hydroponics), rather than generically applicable throughout the
value chain. Most closely related to our concept, the smartFoodTechnologyOWL initiative
investigates the transferability of the digital twin concept to food processing. The focus is
on mapping the process for better control of cyber–physical production systems. In order to
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make quality control of food safer and more efficient, their goal is to continuously generate
a “virtual image” of the product during production.

Other projects focus on the integration of physical models to better predict the changes
to the food through its processing. In [10], the authors describe the integration of physical,
biochemical, and microbiological processes. However, this type of digital twin often lacks
the data-driven perspective of the processes, and [10] propose to include real-time coupling
of sensor data with the digital twin. That would help to foresee problems and proactively
react to them. However, the focus is not on adapting the production process based on the
gained information, nor on processing the data for predicting critical events. Digital twins
are used in production for monitoring a production process [11]. Autonomous systems can
respond to changes in state during ongoing operation, while digital twins can integrate a
variety of data such as environment data, operational data, and process data [11,12]. Today,
food process modeling has mostly pure design optimization and cost targets, but there is a
great potential in reducing inter-product variability, achieving higher transparency, and
reducing the use of resources [13].

Sensors and indicators: With the help of indicators, the presence or absence of a
substance, reactions between different substances, or the concentration of a particular
substance can be detected. Indicators show the analysis results by direct changes (usually
different color intensities) and are placed inside or outside the packaging. Different types
of indicators exist. The most common types are time–temperature indicators, which show
that critical temperatures have been reached; freshness indicators, which monitor the
quality of food products based on microbiologically motivated or chemical changes in
the products; and gas indicators, which detect changes in the atmosphere of the package.
In contrast to immutable indicators that cannot be reused once they have changed their
state, sensors that are either integrated into the food packaging or in the environment can
detect temperature, humidity, pressure on food, or vibrations (accelerometers). Specific
sensors such as gas sensors or biosensors measure the concentration of certain gases such
as carbon dioxide (CO2) or hydro-sulfuric acid, which allow conclusions to be drawn
about perishability. The CO2 concentration can be measured using non-dispersive infrared
(NDIR) sensors or chemical sensors; infrared sensors, as well as electrochemical, ultrasonic,
and laser technologies are used to detect the oxygen concentration. Another type of sensors
is biosensors based on receivers made of biological materials such as enzymes, antigens,
hormones, or nucleic acids. These are used, for example, to identify pathogens such as
salmonella, E. coli, or listeria. The overview in [14] describes the recent state-of-the-art in
sensor and indicator types. Especially, sensors facilitate real-time data collection, which
supports building digital twins.

Contribution. In the case of the food supply chain, a detailed model of the supply
chain, which integrates real-time data to predict supply chain dynamics, can be a promising
concept to respond to unexpected events in the whole supply chain including field, factory,
retailer, and consumer. The goal of our project is to create a digital food twin that can be
used to track the current state of production at any time. While Industry 4.0 approaches
often focus on the analysis of machine data, this project aims at also including a product-
related data analysis (e.g., the effects of pressure exerted by machines). Recent work is
conducted on self-aware computing (SeAC) systems, especially to extract models from
data and use these models to define adaptations of a system or process, as well as on
digital twins in the food sector, but not in a combined approach to intelligently generate a
digital twin and use this digital twin for reasoning. The main contribution is to provide
a framework that includes data provided by a digital food twin in real-time in an SeAC
system. The sensor measurements are complemented by forecasting methods, continuous
simulation, and critical event prediction to act as a knowledge base for a self-aware learning
and reasoning loop (LRA-M loop) and enable adaptive, resilient food processing.
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3. System Design

This paper presents and discusses a concept that complements the typical, retrospec-
tive analysis of supply chain data with short-term (detection of potential problems) and
medium-term data analysis approaches (planning and optimization) to achieve real-time,
predictive decision-making of adaptation in the food supply chain. Consequently, such a
concept helps to better (i) understand the behavior of a supply chain, (ii) predict critical
situations, and (iii) determine a new action plan.

With the help of machine learning and artificial intelligence, the digital twin is gener-
ated from production data and additional data sources (e.g., scientific models, process data,
or raw material data) to ensure the traceability of the production and the food status, but
also to enable the simulation of the variability of the food in the process operation.

Figure 1 shows our concept of the digital twin. In the figure and the following, we
focus on the example of a dairy product (e.g., cheese). The digital twin obtains its data
from the production site (e.g., sensor, machine, and processing data) and also integrates
raw material data, complaints, and knowledge from experts (e.g., about the handling of
production issues). Using different simulation methods based on models from food science,
the digital twin provides information about the actual food processing and provides real-
time feedback to the food process operation, but could also use those simulations based on
scientific models to generate forecasts on how the process steps might influence the quality
of the product. Accordingly, the digital twin is suitable for retrospective, but also predictive
analytics of the process and the quality of the product.

Figure 1. The digital food twin, which integrates data from various sources.

For constructing the digital twin, we rely on machine learning procedures, especially
from the field of explainable artificial intelligence (XAI). Such approaches helps to transform
the sensor data into a digital twin model, which can be used for simulation. Further, in
contrast to approaches based on artificial neural networks (e.g., deep learning), those XAI
models are explainable and humans are able to understand and adjust them. This simplifies
the integration of expert knowledge in the learning process.

Consequently, using the digital twin as a base for reasoning, processes can be adapted
based on the information provided by the digital twin. For controlling the food process
operation, the LRA-M loop known from SeAC systems’ research of the field of artificial
intelligence is used (see Figure 2). Those SeAC systems have two main properties that
describe their functionality [15]. First, those systems learn models that capture knowledge
about (i) the systems themselves (i.e., their hardware and software, including possible
adaptation actions and runtime behavior) and (ii) their environment such as users and
other systems, but also environmental parameters that might be relevant. In the case of
food production, this can be temperature, humidity, conditions of the transportation, raw
material quality, etc. Second, SeAC systems use the information of the models to reason
(i.e., to predict, analyze, consider, or plan required adaptations), which enables them to act
based on their knowledge and reasoning results. For example, this could be the analysis
that some process steps do not provide the target performance, and hence, the system
changes different parameters.

The LRA-M loop uses ongoing learning about the environment in combination with
reasoning for the next actions of the system. For the ongoing learning process, the empirical
observations are used. The learning process analyzes the observations, and the gained
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knowledge is stored using models. The knowledge from the models and the given goals
is used by the reasoning process to determine the next actions that the system should
take to achieve these goals. The generated models can be complemented by other models,
which, e.g., describe biological, physical, or chemical relations that influence the food.
These actions can affect the behavior of the system and have an impact on the environment
as well. The LRA-M loop is adapted as we want to include knowledge provided by the
previously introduced digital twin into the framework. Thereby, the knowledge provided
by the digital twin is not only a simple knowledge database, but processed data, which are
generated using critical event prediction or different machine learning approaches. The
main goal is that the SeAC system provides recommendations to the user on how to react
to or adjust the parameters autonomously.

Figure 2. Conceptual framework on how to include data provided by a digital food twin into a
self-aware learning and reasoning loop. Adapted from [15].

4. Discussion

Food production processes are particularly vulnerable, as the quality of raw materials
varies depending on the season, and in addition, internal biological and chemical properties
have to be taken into account. This information has to be included in the food process
operation to secure a consistent high food quality and reduce food waste during production.
Up to now, there is no food process operation that includes data provided by a digital twin
as real-time input within an adaptive system to control the food processing. The concept
of digital twins could improve this reasoning on how to adapt the process (e.g., machine
parameters) based on the quality or properties of the raw material.

The digital twin concept could also support various functionalities of the food supply
chain. Especially, the possibility to simulate various aspects and, through that, predict a
critical situation in advance (e.g., cold chain violations) help to proactively react to and
adapt the process. This work presents the underlying concept that shows how processed
data (e.g., raw material, machine data, etc.) are used as the input for the manufacturing site
to adapt production processes based on predicting critical situations.

Further, the digital twin can help to decrease the time to market for new products and
support the scale-up of the production of new products. In theory, it would be possible to
use the digital twin of a product with similar properties or a similar food matrix, adjust this
digital twin, and use it as a base to learn the required adjustments in the product process
(e.g., new configurations of machines) for hastening the scale-up of new products. Similarly,
it is feasible to use the digital twin information for the determination of the potential shelf
life of a new product based on the observations of similar products and the adjustments of
a corresponding existing digital twin for the new product.
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5. Conclusions

In this paper, we discussed the idea of using biophysical digital twins—composed
of data from the process (collected by sensors), raw materials of the products, but also
scientific models from food science—to capture and simulate the state of a food product
and process during food processing. Such a digital twin would have several benefits;
especially, it can be the base for reasoning on process adjustment and adaptations. This
paper described the idea of integrating XAI procedures to improve the construction of the
digital twins and integrating human knowledge—transferring the black box of machine
learning to a gray box. Further, the paper described how SeAC systems can support
adaptive food processing.

In our research group, we made the first steps towards our vision. Obviously, there
are several challenges we still have to tackle. These include a general applicable model for
describing the properties of the digital twin, which can be applied to different categories
of food products. Further, we currently are building the digital twins manually. We are
working on solutions that automate the construction of digital twins, as well as the analysis
of the modeled food, similar to solutions from the area of machine learning, e.g., AutoML,
or based on our previous works [6,7]. Additionally, we already have several parts for
a system that can adapt the process from previous work and research projects—we are
currently working on integrating and adjusting them for food processing.
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