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Abstract: In the present work, winery wastewater (WW) was treated by a combined coagulation–
flocculation–decantation (CFD)/photo-Fenton/adsorption process. The aim of this work was to
(1) optimize the CFD process with the application of polyvinylpolypyrrolidone (PVPP); (2) optimize
the photo-Fenton process; (3) evaluate the efficiency of combined CFD/photo-Fenton/adsorption
process. Under the best conditions ([PVPP] = 0.5 g/L, pH = 6.0, rapid mix (rpm/min) = 150/3, slow
mix (rpm/min) = 20/20, sedimentation 12 h), the CFD process achieved a total organic carbon (TOC)
of 46.9 %. With the application of photo-Fenton ([Fe2+] = 2.5 mM/[H2O2] = 225 mM/ pH = 3.0), a
TOC removal of 69.1 and 76.0%, respectively, for UV-A and UV-C radiation was achieved. Electric
energy per order (EEO) achieved 641 and 170 kWh m−3 order−1, respectively. The application of
adsorption ([Bentonite] = 1.5 g/L, pH = 6.0, agitation = 350 rpm, sedimentation = 2 h) achieved a TOC
removal of 72.0 and 76.0%, respectively. In conclusion, the combined treatment is energy efficient for
WW treatment.

Keywords: adsorption; CFD; electric energy per order; photo-Fenton; winery wastewater

1. Introduction

The winery wastewaters (WW) are defined as the residual liquid produced during the
wine processing. They are characterized by a high content of soluble sugars (fructose and
glucose), organic acids (tartaric, lactic and acetic), alcohols (glycerol and ethanol) and high-
molecular weight compounds, such as polyphenols, tannins and lignin [1]. Physicochemical
treatments, such as the coagulation–flocculation–decantation (CFD) process, can be a
suitable technique to reduce the polluting load of WW and, particularly, the colloidal
particles and organic matter [2]. Hydrolysable metal salts (mainly, aluminum and ferric) are
effective for the destabilization of colloidal particles, however, aluminum has been proven
to have a causal action in dialysis encephalopathy and is related to higher prevalence
of Alzheimer’s disease, and iron compounds are generally corrosive [3,4]. In this work,
polyvinylpolypyrrolidone (PVPP) was applied as an alternative to the metal salts in WW
treatment. To complement the CFD process, advanced oxidation processes (AOPs), such as
photo-Fenton process, were applied that involve the generation of hydroxyl radicals (HO•),
which are the second strongest oxidizing agent after fluorine with a standard reduction
potential of Eo = (HO•/H2O) = 2.8 V [5]. To increase the efficiency of these treatments,
adsorption process can be used as a complementary process, due to its simple operation
and good selectivity and given the vast availability of renewable adsorbents, such as
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bentonite [6]. Considering the limited information regarding WW treatment, the aim of this
work was to (1) study the performance of PVPP in the CFD process; (2) optimize the photo-
Fenton process; (3) evaluate the efficiency of the combined CFD/photo-Fenton/adsorption
process.

2. Material and Methods
2.1. Reagents and WW Sampling

Polyvinylpolypyrrolidone (PVPP, 10% w/w) was provided by A. Freitas Vilar, bentonite
was provided by Angelo Coimbra and Ca., sulphate heptahydrated (FeSO4·7H2O) was
acquired from Panreac and H2O2 (30% w/w) was acquired from Scharlab. The sulfuric
acid (H2SO4) was acquired from Scharlau, and sodium hydroxide (NaOH) was acquired
from Panreac, and both were used for pH adjustment. The WW was collected from a cellar
located in the Douro Region from Portugal, samples were stored in plastic containers and
transported to the laboratory.

2.2. Analytical Techniques

Different physical-chemical parameters were determined in order to characterize
the winery wastewater (WW), including turbidity, total suspended solids (TSS), chemical
oxygen demand (COD), biological oxygen demand (BOD5), total organic carbon (TOC) and
total polyphenols. The main wastewater characteristics are shown in Table 1.

Table 1. WW characterization.

Parameters Values

pH 3.61 ± 0.2
Electrical conductivity (µS/cm) 172.5 ± 8.6

Turbidity (NTU) 133 ± 8.2
Total suspended solids—TSS (mg/L) 358 ± 9

Chemical Oxygen Demand—COD (mg O2/L) 5723 ± 58
Biochemical Oxygen Demand—BOD5 (mg O2/L) 1500 ± 44

Total Organic Carbon—TOC (mg C/L) 1601 ± 10
Total polyphenols (mg gallic acid/L) 52.1 ± 8

Biodegradability—BOD5/COD 0.32 ± 0.3
[Fe2+] (mg Fe/L) 0.59 ± 0.08

2.3. CFD/Photo-Fenton/Adsorption Experimental Set-Up

CFD experiments were performed in a conventional model jar-test apparatus (ISCO
JF-4) under fixed conditions, as follows rapid mix (rpm/min) = 150/3, slow mix (rpm/min) =
20/20, sedimentation = 12 h, with variation of (1) pH (4.0–7.0), and (2) [PVPP] (0.5–2.0 g/L).

The photo-Fenton process was optimized under the following conditions:

(1) Variation of Fe2+ concentration (1.0–2.5 mM), under the following conditions: pH = 3.0,
radiation = UV-A IUV = 32.7 W/m2, agitation = 350 rpm, t = 150 min;

(2) Variation of radiation type (no radiation, UV-C, UV-A), under the following conditions:
[Fe2+] = 2.5 mM, pH = 3.0, agitation = 350 rpm, t = 150 min.

The adsorption process was applied under the following conditions: [Bentonite] =
1.5 g/L, pH = 6.0, agitation = 350 rpm, sedimentation = 2 h.

2.4. Statistical Analysis

All the experiments were performed in triplicate and differences among means were
determined by analysis of variance (ANOVA) using OriginLab 2019 software (Northamp-
ton, MA, USA) and the Tukey’s test was used for the comparison of means, which were
considered different when p < 0.05. The data are presented as mean and standard deviation
(mean ± SD).
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3. Results and Discussion
3.1. Coagulation–Flocculation–Decantation Experiments

In this section, the CFD process was optimized, with an application of PVPP as a
coagulant. In Figure 1a, the pH of the WW was varied from 4.0 to 7.0. Results showed a
significant removal of turbidity, TSS, COD and total polyphenols with the application of
pH 6.0 (58.3, 58.7, 0.2 and 71.6%, respectively). In Figure 1b, the PVPP dosage was varied
(0.5–2.0 g/L). With application of 0.5 g/L, the results showed a significant increase in the
turbidity, TSS, COD and total polyphenols removal (66.0, 83.7, 48.0 and 63.3%, respectively).
These results showed similar efficiency to the application of chitosan for the treatment of
wastewater at pH 6.0 [7]. In addition, PVPP forms stable H bonds with phenol groups
via its -CO-N linkages and hydrophobic interactions between the pyrrolidone and phenol
rings [8], which explains how there is a large removal in polyphenols.
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Figure 1. Optimization of CFD (a) pH (4.0–7.0) under the following conditions: [PVPP] = 2.0 g/L,
rapid mix (rpm/min) = 150/3, slow mix (rpm/min) = 20/20, sedimentation = 12 h; (b) PVPP dosage
(0.5–2.0 g/L) under the following conditions: pH = 6.0, rapid mix (rpm/min) = 150/3, slow mix
(rpm/min) = 20/20, sedimentation = 12 h. Means in bars with different letters represent significant
differences (p < 0.05) within each parameter (turbidity, TSS, COD and total polyphenols) by comparing
wastewaters.

3.2. Photo-Fenton Experiments

To optimize the photo-Fenton process, the effect of the addition of Fe2+ catalyst
was studied and the results are shown in Figure 2a. The Fe2+ concentration was varied
(1.0–2.5 mM) under the operational conditions pH = 3.0, radiation = UV-A IUV = 32.7 W/m2,
agitation = 350 rpm, t = 150 min. Results showed a TOC removal of 45.3, 44.7, 43.2 and
54.2%, respectively, for 1.0, 1.5, 2.0 and 2.5 mM. The increase in catalyst concentration
increased the H2O2 decomposition into hydroxyl radicals (HO•), increasing the rate of
TOC removal. In Figure 2a, it was observed there was a H2O2 consumption of 116, 146, 168
and 169 mM, respectively. These results were in agreement to Gupta and Garg [9], who
observed that and increase in Fe2+ concentration increased the degradation of ciprofloxacin
using Fenton’s oxidation process. In Figure 2b, it is shown the variation of radiation type
(no radiation, UV-C and UV-A) under operational conditions: [Fe2+] = 2.5 mM, pH = 3.0,
agitation = 350 rpm, t = 150 min. Results showed a TOC removal of 35.5, 65.0 and 54.2%,
respectively, for no radiation, UV-C and UV-A. The H2O2 consumption was observed to be
30, 225 and 169 mM, respectively, therefore, the application of UV-C was able to generate
more HO• radicals, increasing the TOC removal from the WW.
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In Table 2, the energy consumption of both systems used for the photo-Fenton process
is presented. The energy consumption, given by the electric energy per order (EEO), was
determined by Equation (1) [10] as follows:

EEO =
38.4 × 10−3P

Vk
(1)

where P is the power of the system (kW), V the volume (m3) and k the pseudo first-order
kinetic rate (min−1). The results showed a higher energy consumption with the application
of UV-A, regarding UV-C (641 and 170 kWh m−3 order−1, respectively).

Table 2. Photo-Fenton experiments with UV-A and UV-C radiation systems; pseudo first-order kinetic
rate (k) and electric energy per order (EEO) with V = 500 × 10−6 m3. Means in the same column
with different letters represent significant differences (p < 0.05) within each condition (k and EEO) by
comparing the radiation.

Radiation P (kW) k × 10−3 (min−1) EEO (kWh m−3 Order−1)

UV-A (365 nm) 0.0327 3.92 ± 3.41 × 10−5 a 641 ± 5.37 a
UV-C (254 nm) 0.0150 6.78 ± 3.09 × 10−5 b 170 ± 3.37 b

3.3. Combination of CFD/Photo-Fenton/Adsorption

In Section 3.1, it was observed that with application of the CFD process ([PVPP] =
0.5 g/L, pH = 6.0, rapid mix (rpm/min) = 150/3, slow mix (rpm/min) = 20/20, sedimen-
tation = 12 h), a turbidity, TSS, TOC, COD, BOD5 and total polyphenols removal of 66.0,
58.3, 46.9, 48.0, 62.5 and 63.3%, respectively, was achieved. In Figure 3a, with application of
UV-A-Fenton process ([Fe2+] = 2.5 mM, [H2O2] = 225 mM, pH = 3.0, agitation = 350 rpm,
t = 150 min), it was observed there was a significant removal of 75.6, 86.0, 69.1, 78.3, 62.5
and >99.5%, respectively. The adsorption process ([Bentonite] = 1.5 g/L, pH = 6.0, agi-
tation = 350 rpm, sedimentation = 2 h) was applied as a final complement, achieving a
significant removal of 99.4, 90.5, 72.0, 80.9, 62.5 and >99.5%, respectively. In Figure 3b, with
the application of UV-C-Fenton, it was observed there was a significant removal of 77.1,
86.2, 76.0, 79.1, 62.5 and 97.3%, respectively. The application of the adsorption process
further enhanced the removals, removing 98.4, 88.3, 76.0, 81.3, 80.0 and 99.8%, respectively.
The effect of bentonite as an adsorbent was also studied in the work of Jorge et al. [11], who
observed a high organic removal by the bentonite in WW treatment.
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Table 3 shows the evolution of the biodegradability after each treatment process.
Results showed a significant increase in the biodegradability after the performance of
the photo-Fenton process (0.45 and 0.47, respectively, for UV-A and UV-C). After the
application of UV-A-Fenton/adsorption process, a significant increase to 0.51, regarding
UV-C-Fenton/adsorption (0.28) was observed. Clearly, the CFD/UV-C-Fenton/adsorption
system was more effective for organic carbon removal, however, the biodegradability was
reduced.

Table 3. Biodegradability (BOD5/COD) observed after each treatment process. BOD5/COD > 0.8
highly biodegradable; 0.8 > BOD5/COD > 0.7 biodegradable; 0.7 > BOD5/COD > 0.3 slowly
biodegradable; 0.3 > BOD5/COD > 0.1 slightly biodegradable; BOD5/COD < 0.1 non-biodegradable.

Treatment Processes BOD5/COD

CFD 0.12
CFD + Photo-Fenton 0.45 (UV-A), 0.47 (UV-C)

CFD + Photo-Fenton + Adsorption 0.51 (UV-A), 0.28 (UV-C)

4. Conclusions

Considering this work’s results, it is concluded:

(1) The CFD process with the application of PVPP achieves a COD and total polyphenols
removal of 48.0 and 63.3%, respectively;

(2) With the application of UV-A-Fenton and UV-C-Fenton process, it achieves 54.2 and
65.0% TOC removal, respectively, with a H2O2 consumption of 225 and 169 mM H2O2;

(3) The UV-C-Fenton achieves lower EEO regarding the UV-A-Fenton process (170 and
641 kWh m−3 order−1, respectively);

(4) The combined CFD/UV-A-Fenton/Adsorption system achieves a COD removal of
80.9% with a biodegradability of 0.51.
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