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Abstract: In this work, new solid electrolytes Li1+yTi2−x−yZrxAly(PO4)3 (0 ≤ x ≤ 0.2, 0 ≤ y ≤ 0.2)
were prepared by the sol-gel and solid-state methods (sintering temperatures: 800–1000 ◦C). The
prepared materials were characterized by X-ray powder diffraction and scanning electron mi-
croscopy. Their conductivity was investigated by impedance spectroscopy in the temperature range of
25–200 ◦C. The activation energies of Li+ transfer were calculated. The Li1.2Ti1.7Zr0.1Al0.2(PO4)3

material prepared by solid-state reaction exhibits the highest conductivity at 25 ◦C (6.2 × 10−4 S/cm).

Keywords: solid electrolyte; NASICON-type; lithium-ion conductor

1. Introduction

Today, due to the growing demand for mobile power sources, lithium-ion batteries
are becoming increasingly important because of their high power density and quite low
self-discharge. However, there is still a problem with their application, caused by the
flammability and insufficient electrochemical stability of the liquid electrolytes in most
commercial batteries. In this regard, it is necessary to develop solid electrolytes with good
stability and high ionic conductivity. Among all types of solid electrolytes with lithium con-
ductivity, compounds with the NASICON-type structure are the most promising. However,
a significant disadvantage of these materials is their insufficiently high ionic conductivity
compared to liquid electrolytes. To increase the bulk conductivity, point defects can be
created in their structure by isovalent (Zr4+) and heterovalent (Al3+) doping. This approach
can significantly increase the bulk conductivity of lithium titanium phosphate by simul-
taneously changing the channel size and introducing additional Li+ ions. In this work,
Li1+yTi2−x−yZrxAly(PO4)3 materials (0 ≤ x ≤ 0.2, 0 ≤ y ≤ 0.2) were synthesized by both
sol-gel (SG) and solid-state (SS) methods, by varying the final annealing temperature to
determine the optimal synthesis method.

2. Methods
2.1. Materials and Reagents

The following raw materials were used for the synthesis of Li1+yTi2−x−yZrxAly(PO4)3
(0 ≤ x ≤ 0.2, 0 ≤ y ≤ 0.2): Li2CO3 (99%, Sigma-Aldrich, St. Louis, MI, USA), (C4H9O)4Ti
(99%, Alfa Aesar, Kandel, Germany) (or TiO2 (98%, Chimmed, Moscow, Russia) in case of
SS), NH4H2PO4 (99%, Sigma-Aldrich, St. Louis, MI, USA), (C3H7O)4Zr (70 wt.%, Sigma-
Aldrich, St. Louis, MI, USA) (or Zr(HPO4)2·2H2O (99.99%, Sigma-Aldrich, St. Louis, MI,
USA) in case of SS) and Al(NO3)3·9H2O (99.997%, Sigma-Aldrich, St. Louis, MI, USA).
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2.2. Methods

In both synthesis methods, the initial reagents were mixed in a stoichiometric ratio.
In the case of the sol-gel method, a water–ethanol mixture was used and citric acid was
added as a chelating agent. Figures 1 and 2 show Li1+yTi2−x−yZrxAly(PO4)3 synthesis by
the sol-gel and solid-state methods, respectively.
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The X-ray diffraction (XRD) patterns were collected using Rigaku D/MAX 2200 (Cu
Kα radiation). The ion conductivity of the sintered pellets with silver electrodes was
measured by impedance spectroscopy using an Elins Z1500 PRO impedance meter with an
AC amplitude of 80 mV, from 10 Hz to 2 × 106 MHz, in the temperature range of 25–200 ◦C.
Scanning electron microscopy (SEM) (Tescan Amber GMH (Kohoutovice, Czech Republic))
was used to analyze the morphology of the samples.

3. Results and Discussion
3.1. XRD

Figures 3 and 4 present the X-ray diffraction patterns of Li1+yTi2−x−yZrxAly(PO4)3
(0 ≤ x ≤ 0.2, 0 ≤ y ≤ 0.2) prepared by the sol-gel and solid-state methods.
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the presence of which can negatively affect the ionic conductivity.
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Figure 4. X-ray diffraction patterns of Li1+yTi2−x−yZrxAly(PO4)3 (x = 0–0.2, y = 0–0.2) prepared by
solid-state reaction.

3.2. SEM

Scanning electron microscopy images are shown in Figures 5 and 6.
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Eng. Proc. 2022, 19, 16 4 of 5

The SEM images demonstrate that the solid-state method results in more sintered
ceramics with a larger particle size, which, in turn, agrees with the density of the produced
ceramics. Thus, for samples prepared by the sol-gel method, the density is in the range
of 1.87–2.28 g/cm3, while for materials prepared by the solid-state method, the ceramics
density is in the range of 2.13–2.75 g/cm3.

3.3. Ionic Conductivity

The temperature dependences of ionic conductivity of the Li1+yTi2−x−yZrxAly(PO4)3
(0 ≤ x ≤ 0.2, 0 ≤ y ≤ 0.2) materials prepared by the sol-gel and solid-state methods are
shown in Figures 7 and 8, respectively.
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Figure 8. Plots of ionic conductivity vs. temperature of Li1+yTi2−x−yZrxAly(PO4)3, x = 0–0.2, y = 0–0.2,
prepared by solid-state method.

Ion conductivity increases significantly with the substitution of 5% titanium by zir-
conium in LiTi2(PO4)3. Increasing the zirconium content has the opposite effect, and the
conductivity of the resulting material becomes like that of the pristine lithium titanium
phosphate. A similar effect was reported elsewhere [1,2]. In all cases, the additional intro-
duction of aluminum leads to an increase in conductivity. The optimal composition with
the highest lithium conductivity was determined (Li1.2Ti1.7Zr0.1Al0.2(PO4)3—6.2 × 10−4 at
25 ◦C). The activation energies of conductivity of the obtained materials are in the range of
30–49 kJ/mol.
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