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Abstract: To provide reliable services, mobile network operators (MNOs) continuously collect vital
mobile network performance data to monitor and analyze the functioning of their radio access net-
works (RANs). RAN is a critical infrastructure for mobile networks and its performance is measured
by key performance indicators (KPIs) such as accessibility, retainability, availability, integrity, and
mobility. The standard practice is that network managers utilize KPIs to identify failures or unusual
events that can significantly degrade the quality of service delivery and the end-users’ experiences.
However, taking corrective steps based on monitored performance parameters is a reactive approach
that contributes to network and service degradations until corrective actions are taken. With the mon-
itoring and automation of RAN infrastructure performance in mind, this paper presents the Markov
chain, a widely used probabilistic modeling approach, as a systematic method for jointly predicting
network accessibility and retainability status, two of the crucial RAN performance measures. The
novel joint prediction is proposed to have a single operation for both accessibility and retainability.
Real-time hourly KPIs data was collected from 1530 cells (base stations) run by an operator’s network
in Addis Ababa, Ethiopia, for 4 months, from 1 November 2020 to 28 February 2021. The cells are
scattered across the capital city, where factors such as land use, settlement patterns, and customers
behaviors differ. To capture the spatial variation of the KPIs without escalating the computational
complexity much, the dataset is separated into six clusters using the K-mean clustering approach.
The Markov chain KPIs status prediction models are formulated on a cluster level. The results reveal
that the proposed models can predict the KPIs status with 94.61 percent accuracy. Because the data is
already available and can be collected at any time using the operator’s network management system
(NMS), this is a cost-effective technique to proactively improve mobile network performance.

Keywords: accessibility; retainability; Markov chain; K-mean clustering

1. Introduction

The demand for dependable mobile network services is growing and is projected to
continue to grow in the coming years. To meet this rising service demand, mobile network
operators (MNOs) are expanding their networks and use a centralized network manage-
ment system (NMS) to monitor the performance of the radio access network (RAN) and
core network, two critical components of mobile network infrastructure. NMS is a network
monitoring and control tool, with fault management and performance management its two
essential functionalities [1]. Fault management is the need for fault-free operation and has
three aspects, namely fault identification, fault isolation, and fault correction. The fault
identification is conducted with the help of network alarms, while fault isolation of the
network’s remaining components from the failure is needed so that the isolated network
can continue to function normally. Fault correction requires repairing or replacing failed
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components. Performance management, on the other hand, includes network monitoring
to observe network activities and network control to take mitigations that increase network
performance. Some of the network manager’s performance concerns include determining
the amount of capacity utilization, traffic monitoring, throughput status, and reaction time
status, among others [1].

Although the NMS offers critical information through various management sub-
systems, most operators find it challenging to manage the data collected from the system
and take corrective actions in a timely manner. Operators select key performance indicators
(KPIs) and monitor them at hourly, daily, weekly, or monthly intervals to discover problems
or unusual events that might drastically affect service delivery and end-user experience.
KPIs are further grouped to assess network performance, and the widely used performance
measures are accessibility, retainability, availability, integrity, and mobility. NMS holds vast
amounts of historical network performance data, from which possible trends and patterns
can be revealed using cutting-edge data mining techniques.

In mobile networks, Markov chain is used for call admission control [2], quality of
experience (QoE) modeling [3], quality of service (QoS) modeling [4], efficient resource
utilization [5], prediction of user mobility [6], handover management, and network oper-
ation status monitoring [7]. In [8,9], Markov chain is proposed to forecast radio resource
controller (RRC) setup success and call setup success rates (CSSR) for the Long-term Evo-
lution (LTE) mobile network. The status or state as per Markov’s terminology of a cell
(base stations) is classified as “Good/High,” “Moderate/Acceptable,” or “Bad/Low” based
on the RRC success rate. Data collected from an operator’s network is used to create the
Markov chain–based models for RRC and CSSR future state predictions. A given cell is
in one of the three states depending on the time of a day, the cell’s geographic location,
network capacity, and other user- and network-related factors. In addition to the Markov
chain, cluster-based approaches, decision trees, and artificial neural networks were em-
ployed in [10–12] to estimate a network accessibility-related parameters. These and papers
such as [13–15] addressed related performance measures for various generations of cellular
mobile systems.

This paper’s primary goal is to forecast mobile network accessibility and retainability
status using real-time data gathered from the NMS of a major network operator in the
capital city of Addis Ababa, Ethiopia. Specifically, the data were collected on an hourly
basis from 1530 cells for 4 months’ duration, from 1 November 2020 to 28 February 2021.
The states of these two critical RAN performance parameters are defined based on the
International Telecommunication Union’s (ITU’s) recommendations for network accessibility
and retainability. As the cells are scattered across different geographic regions of the capital city,
K-mean clustering technique is used to group cells having spatially correlated performances.
The per-cluster averaged data are used to construct the Markov chain prediction model. Two
approaches are used for the model formulation, and one is a separate approach so that two
Markov models are built for accessibility and retainability. In the joint modeling, a single
model is used to predict both parameters. Using either of the two approaches, we can compute
the state of the network and the number of transitions until a steady-state is reached. The
essential contributions of the research are mentioned here.

• In contrast to prior attempts, we established four states [16], namely “Idle,” “Good,”
“Acceptable,” and “Bad” states, to conform to the ITU’s recommendations. Further-
more, the Markov chain is constructed to jointly estimate accessibility and retainability
in a single operation, yielding a model with 16 states. Four-state separate estimation
is employed as a benchmark for comparison. Incorporating ITU’s recommendations
for state definition and the joint prediction proposal are the unique contributions of
this research.

• Previous models only operate for a single cell, leaving out the correlated nature of
accessibility and retainability in the spatial domain. Including more cells, however,
increases the number of combined states; thus, the Markov model may not scale as the
number of cells increases. As an alternative to replicating the prediction method as



Eng. Proc. 2022, 18, 9 3 of 11

many times as the number of cells, we employed K-mean clustering to identify related
cells. The Markov chain is then applied to the per-cluster averaged data. Prediction
aids in analyzing the status of the considered mobile network.

The remaining paper is organized as follows. Section two discusses fundamental
concepts and formulas in accessibility and retainability. Section three introduces some
basic concepts of discrete Markov chains. Section four presents and discusses the results
obtained. Finally, Section five concludes the paper by identifying possible future directions.

2. Accessibility and Retainability KPIs

KPIs obtained from network counters can be grouped into accessibility, retainability,
integrity, mobility, and other factors in order to manage and track the performance of
the network [17]. According to ITU, service accessibility is “the ability of a service to be
obtained, within specified tolerances and other given conditions, when requested by the user.”
Service retainability is “the ability of a service, once obtained, to continue to be provided under
given conditions for a requested duration” [18].

2.1. Accessibility

The accessibility KPI is expressed in probabilities, which indicate how likely a user is
able to access the mobile service during specific service times and conditions. Accessibility
measures the network’s performance during call setup or before establishing a bearer [19].
For data availability reason, this paper focuses on the Third Generation (3G) mobile net-
works. RRC, radio access bearer (RAB), Enhanced Universal Terrestrial RAN RAB (ERAB),
and CSSR are critical accessibility parameters, as presented below.

• RRC setup success rate (RRC SSR) evaluates the call success rate in a cell or cluster.
The formula for this KPI is:

RRC SSR =
Number o f RRC setup success

number o f RRC connection attempt
× 100%. (1)

• RAB setup success rate (RAB SSR) evaluates the success rate of assigning a RAB during
a call setup procedure. The formula for this KPI is given as follows:

RAB SSR =
Number o f RAB setup success
number o f RAB setup attempt

× 100%. (2)

• CSSR is used to evaluate the call setup success at the cell or cluster level. This KPI
is calculated based on RRC SSR and RAB SSR for the case of third generation (3G)
networks and ERAB SSR for the case of LTE networks.

Accessibility = CSSR = RRC SSR× RAB SSR× 100%. (3)

2.2. Retainability

Retainability assesses a network’s performance after RAB is established and indicates
the proportion of calls that serve the essential service without call drops.

Retainability =

(
1− Number o f RAB abnormal release

d total number o f RAB release

)
× 100%. (4)

Equation (4) fraction shows the call drop rate (CDR) value.

3. Discrete-Time Markov Chain

A Markov chain is a particular class of a stochastic process with random variables
designating the states or outputs of the system [7,20]. The probability of the system
transitioning from its current state to a future state depends only on the current state. The
collection of states forms a state space of alphabet size N. Let {a1, a2, . . . , aN} designate
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the state space and let a sequence of states S1, . . . , Sn . . . , generated by the system in time,
where Sn ∈ {a1, a2, . . . , aN} and n in Sn indicates the discrete-time index.

For the Markov chain fulfilling the memoryless assumption, the transition probability
is expressed as [21]:

P(Sn+1 = aj
∣∣Sn = ai, Sn−1 = ah, Sn−2 = ag, . . . .

)
= P

(
Sn+1 = aj

∣∣Sn = ai
)
,

(5)

where 1 ≤ i, j ≤ N. We learn from the Markov property that only the most recent state
matters to predict the next or future state. From Equation (5), the transition probability
from state ai to state aj is designated as:

Pij = P
(

Sn+1 = aj
∣∣Sn = ai

)
. (6)

For all i and j, the summation of all transition probabilities in a row must be equal to
one, i.e.,

n

∑
j=1

pij = 1. (7)

3.1. Transition Probability Matrix

The collection of the transition probabilities Pij forms the probability transition matrix
(TPM), P (See Equation (8)). Each entry of the matrix shows the probability that the system
will transition or remain in the same state. P is a square matrix with the same dimension as
the number of states.

P =


P11 P12 P13 .. P1N
P21 P22 P23 .. P2N

. . . .. .

. . . .. .
PN1 PN2 PN3 .. PNN

 (8)

The transition probability Pij is computed from empirical data by counting the number
of transitions from state i to state j and dividing the result by the count of all transitions
from state i [7].

3.2. Initial (Probability or State) Distribution

The initial state distribution is usually expressed as a probability distribution vector, U
of dimension 1× n, as shown in Equation (9), with entries that indicate the probability that
the system is in a given state at a given initial time. Each entry of the vector is non-negative
and the sum of the all entries should be unity.

U = [P1, P2, . . . ., PN ]. (9)

Without accurate knowledge of the initial distribution, the system can be considered
to be in one state with absolute certainty, i.e., probability of unity.

3.3. Steady-State Distribution

One of the fascinating aspects of systems that obey the Markov chain is that, after
a sufficient number of iterations/transitions, the chain converges to a steady-state, sta-
ble, equilibrium, or static distribution [7]. A steady-state condition is one in which the
probability of the next state is the same regardless of the present state.

With knowledge of the transition matrix P and the initial probability vector U, the
probability distribution of the chain after k transitions in the future is given by [7].

U(k) = UPk (10)
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Pk is the result of multiplying the transition matrix k times by itself. Each element of
U(k), designated as P(k)

ij , is the probability of going from state i to state j in k iteration. As

we keep iterating through state transitions by applying Pk, the probability vectors U(k)

converge to some fixed value, say π(k). That is called the steady-state distribution and
mathematically written in the form as in Equation (11) below.

lim
k→∞

U(k) = UPk = π(k). (11)

We note from Equation (11) that the Markov chain probabilistically predicts the system’s
future state based on knowledge of state space, initial distribution, and transition matrix.

3.4. Transition Diagram

A transition diagram, which illustrates all of the system’s transitions, is another way
to display the TPM. A directed arrow shows the presence of a transition from one state to
another state, and each node represents a state of the Markov chain. The edge represents
the current state, and the arrow points towards the next state [7].

4. Results and Discussions

This section covers data collection and accessibility and retainability status prediction
using a four- and sixteen-state Markov chain model.

4.1. Data Collection and Preprocessing

The performance report system (PRS) installed in the operator’s network was used to
collect real-time hourly data from 1530 cells for 4 months’ duration.

• Linear interpolation is used to fill data gaps caused by factors such as cell outages and
connection problems among cells and central radio network controller (RNC).

• If no voice or data service attempts are made in a cell for one hour, the accessibility and
retainability values are zero. This situation is handled separately, and the accessibility
or retainability status is “Idle.” Figure 1 shows RRC and RAB attempt values for
Cluster 6 throughout a week, and both values are zero at midnight.
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• The data are split into two, with 60% utilized for training and 40% for model vali-
dation/testing. The training data are used to generate the transition matrix, and the
process of constructing such a matrix from data are described in [7]. Combinations of
70/30 and 80/20 are also utilized for comparison purposes.

• The system predicts the next probability vector given the current state probability
distribution and the transition matrix. The operation is then continued until a steady-
state condition is reached. Following step/iteration prediction, results are compared
to the validation data to assess prediction accuracy.
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4.2. Clustering

It takes time to analyze individual cell performance and patterns. In this research,
we suggest K-mean clustering as a method for grouping cells with similar accessibility
and retainability properties. Model construction and prediction are based on per-cluster
averaged accessibility and retainability. The Elbow approach in K-mean clustering is used
to identify the number of clusters by changing the parameter from 2 to 18. Each cell was
randomly assigned to several clusters to vary the centroid of each center. The procedure
was repeated until the cluster variation in the data could no longer be reduced by adjusting
the cluster centroid. We discovered that a clustering value of 6 is adequate. Hourly data
acquired from each cell varies from 0% to 100%; however, if no voice or data service
requests are received in a cell for 1 h, all counter values for that hour are zero, as illustrated
in Figure 1.

4.3. KPI Threshold for States Definition

Operators set threshold values for several KPIs based on the ITU’s recommenda-
tions, considering variables such as capital expenditures, operational expenses, QoS, and
customer satisfaction. Tables 1 and 2 display a threshold value for the considered oper-
ator’s accessibility and retainability. Based on the values in the two tables, the states of
accessibility and retainability are generated.

Table 1. Possible values of call setup attempt and CSSR.

Call Setup Attempt Value State of a Cell

>0.0 CSSR ≥ 98.0% Good (G)

>0.0 95.0% ≤ CSSR ≤ 98.0% Acceptable (A)

>0.0 0.0% ≤ CSSR ≤ 95.0% Bad (B)

=0.0 - Idle (I)

Table 2. Possible values of RAB setup success and CDR.

RAB Setup Attempt Value State of a Cell

>0.0 0.0% ≤ CDR ≤ 1.0% Good (G)

>0.0 1.0% ≤ CDR ≤ 3.0% Acceptable (A)

>0.0 3.0% ≤ CDR Bad (B)

=0.0 - Idle (I)

4.4. Separate Prediction

As indicated above, the accessibility and retainability predictions at the cluster level
can be made separately and jointly. Four states are required for the separate case. Hence,
the corresponding transition matrices are 4× 4. The state transition probability diagram for
the sixth cluster is given in Figure 2 below, which is obtained after developing the model.
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Note that there are missing arrows in the two figures. As an example, there is no arrow
in Figure 2a pointing from state A to state I, indicating that such a transition does not exist
or the system has never landed in an idle state if it was initially in the Acceptable state.

4.5. Joint Prediction

The different state combinations of accessibility and retainability can be seen via joint
estimation. For example, a Bad state of in accessibility and a Bad state in retainability can
occur at the same time. When all possible combinations are considered, the total number of
states rises to 16, and the resulting transition matrix is shown in Figure 3.
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4.6. State Prediction

After creating the transition matrices and knowing the current/initial state distribution,
the next state and steady state distributions are predicted using Equation (10). If the current
state is (assumed to be) in a Good state, then the value of π0 is,

π0 = [ I G A B ] = [ 0 1 0 0 ] (12)

Then, using Equations (10) and (12), the next accessibility probability is π1 for one of
the clusters when computed, and the result is:

[0 1 0 0] ×


0.1111 0.8333 0.0000 0.0556
0.0095 0.9780 0.0089 0.0036
0.0000 0.8333 0.1667 0.0000
0.0000 1.0000 0.0000 0.0000


=
[

0.0095 0.9780 0.0089 0.0036
] (13)

According to the result, the system has a 0.95 percent chance of going to the Idle state,
a 97.80 percent chance of staying in a Good state, a 0.89 percent chance of going to the
Acceptable state, and a 0.36 percent chance of going to the Bad state.

Equation (11) is used to find the steady-state distribution calculated iteratively until
the next and previous state values are equal. Tables 3 and 4 display the steady-state results
for the four-state Markov chain regarding accessibility and retainability. Table 5 depicts the
cluster 1 steady-state distribution using the sixteen-state Markov chain. For both scenarios,
70% of the data are used as a training set.
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Table 3. Steady-state vector of accessibility using four-state Markov chain.

Cluster
Steady-State Vector of Accessibility

I G A B

1 0.0000 0.9926 0.0060 0.0015

2 0.0000 0.9722 0.0149 0.0129

3 0.0000 0.9911 0.0079 0.0010

4 0.0000 0.9782 0.0179 0.0040

5 0.0000 0.9916 0.0055 0.0030

6 0.0109 0.9722 0.0114 0.0055

Table 4. Steady-state vector of retainability using four-state Markov chain.

Cluster
Steady-State Vector of Retainability

I G A B

1 0.0000 0.9980 0.0020 0.0000

2 0.0000 0.9955 0.0035 0.0010

3 0.0000 1.0000 0.0000 0.0000

4 0.0000 0.9980 0.0020 0.0000

5 0.0000 0.9965 0.0030 0.0005

6 0.0000 0.9901 0.0079 0.0020

Table 5. Steady-state vector of Cluster 1 using sixteen-state Markov chain.

Cluster
Steady-State Vector

[II IG IA IB GI GG GA GB AI AG AA AB BI BG BA BB]

1

[0.0000 0.0000 0.0000 0.0000

0.0000 0.9926 0.0000 0.0000

0.0000 0.0040 0.0020 0.0000

0.0000 0.0015 0.0000 0.0000]

In Table 3, the maximum value in the Good state from the six clusters is 99.26% in
cluster 1, and the minimum value is 97.22% in clusters 2 and 6. The maximum value of
the Bad state is 1.29% in cluster 2, and the minimum value is 0.1% in cluster 3. From this
cluster, one cell is at the top in the Good state, and cluster 2 cells are at the top in the Bad
state. Though cluster 6 cells are the least in the Good state, they are not at the top in the
Bad state because, next to the Good state, cluster 6 cells have a high probability (1.09%) of
being in the Idle state. So, if optimization or maintenance work is needed, the schedule and
priority should be given based on the steady-state vector values of each cluster.

Steady state distribution for the sixteen-state Markov chain follows the same approach.
Cluster 1’s steady-state outcome is shown in Table 5. The first letter stands for accessi-
bility, while the second stands for retainability, and 99.26% of the time, accessibility and
retainability were in the Good state, while for 0.4% of the time accessibility was in the
Acceptable state and retainability was in the Good state. Furthermore, for 0.2% of the time,
accessibility and retainability were both in the Acceptable state, while 0.15% of the time,
accessibility was Bad, and retainability was in the Good state. As a result, the table provides
cell information relating to accessibility and retainability, allowing operators to quickly sort
cells that perform poorly in either or a combination of the two performance measures.
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4.7. Evaluation Metric

The accuracy of a model was assessed using Equation (14) [21], which calculates the
percentage of correctly forecasting the next state given the current state.

Accuracy =
Correct predictions

Total number o f examples
× 100%. (14)

Table 6 below shows the accuracy results for different combinations of training data
proportion, clusters, four vs sixteen states modeling and the two KPIS considered. As
an example, we note that a minimum value of 96.09% prediction accuracy is achieved in
cluster 2 in predicting accessibility when 60% training set is used, while 96.87% prediction
accuracy is achieved in cluster 5 in predicting retainability when the 80% training set is
used. A 94.61% prediction accuracy is achieved in cluster 6 in predicting both accessibility
and retainability when 80% of the data are used for training and when the modeling is the
case of the sixteen-state Markov chain.

Table 6. Prediction accuracy for sixteen-state Markov chain.

Cluster Training Set
Accessibility

Accuracy Using
Four States

Retainability
Accuracy Using

Four States

[(Column 3 ×
Column 4)/100] (%)

Accessibility and
Retainability Accuracy

Using Sixteen States

1

60% 98.7837 99.1312 97.9254 97.8280

70% 98.3796 98.8426 97.2410 97.1065

80% 98.0870 98.2609 96.3811 96.1739

2

60% 96.0904 98.6968 94.8381 95.5691

70% 96.7593 98.3796 95.1914 96.1806

80% 96.1739 97.7391 93.9995 95.4783

3

60% 98.5230 100.0000 98.5230 98.5230

70% 98.4954 100.0000 98.4954 98.4954

80% 98.6087 100.0000 98.6087 98.6087

4

60% 98.5230 100.0000 98.5230 98.5230

70% 98.3796 100.0000 98.3796 98.3796

80% 98.6087 100.0000 98.6087 98.6087

5

60% 97.7411 98.4361 96.2126 97.0460

70% 97.3380 97.9167 95.3101 96.4120

80% 96.1739 96.8696 93.1633 94.7826

6

60% 96.5248 98.0886 94.6798 94.7871

70% 96.8750 98.0324 94.9689 95.0231

80% 96.6957 97.7391 94.5095 94.6087

5. Conclusions

In this paper, the two important mobile network KPI parameters of accessibility and
retainability are predicted by formulating the Markov chain in four states and sixteen
states. The sixteen-state Markov chain is formulated in a bid to jointly estimate both KPIs
in a single operation. Moreover, in order to capture the spatial behaviors of these KPIs,
K-mean clustering is applied to cluster the data from 1530 cells into 6 clusters. States are
created based on threshold values set by operators and the developed models are validated
by splitting the data for training and testing. We hope the approach provides significant
insight on how to use data available within an operator’s NMS to better understand the
status of a network.
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This work might be improved in some ways. Conducting the prediction for a large
number of cells in a computationally efficient manner and to obtain per-cell level infor-
mation is one research area. The clustering and joint approach may not scale well as the
number of cells grows. Moreover, applying the approach for other KPIs, network types,
and services is an area worth exploring. Finally, future research should employ the hidden
Markov model for status modeling and prediction.

Author Contributions: Conceptualization, T.A.Y. and D.H.W.; methodology, T.A.Y. and D.H.W.;
software, T.A.Y. and A.S.O.; validation, A.S.O. and T.A.Y.; formal analysis, A.S.O., T.A.Y. and D.H.W.;
investigation, A.S.O., T.A.Y. and D.H.W.; resources, T.A.Y.; data curation, T.A.Y.; writing—original
draft preparation, A.S.O. and T.A.Y.; writing—review and editing, A.S.O. and D.H.W.; visualiza-
tion, A.S.O.; supervision, D.H.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of the data used for the research.
Data was obtained from ethio telecom and are available from the second author with the permission
of ethio telecom.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yemer:, T.A. Mobile Networks Accessibility, and the Retainability States Prediction Using Markov Chain. Master’s Thesis, Addis

Ababa University, Addis Ababa, Ethiopia, January 2022.
2. Huawei Technologies Co., Ltd. HUAWEI RAN KPI for Performance Management (RNC V100R006); Huawei Technologies Co., Ltd.:

Shenzhen, China, 2006.
3. Machine Learning Glossary. Available online: https://developers.google.com/machine-learning/glossary#multi-class (accessed

on 19 May 2021).
4. International Telecommunication Union. Quality of Service and Dependability Vocabulary; The International Telegraph and Telephone

Consultative Committee: Geneva, Switzerland, 1988; Volume E.800, p. 16.
5. Tolver, A. An Introduction to Markov Chain; Department of Mathematical Sciences, University of Copenhagen: Copenhagen,

Denmark, November 2016.
6. Ng, H.Y.; Ko, K.T.; Tsang, K.F. 3G Mobile Network Call Admission Control Scheme Using Markov Chain. In Proceedings of the

Ninth International Symposium on Consumer Electronics, Macau, China, 14–16 June 2005. [CrossRef]
7. Mitra, K.; Ahlund, C.; Zaslavsky, A. QoE Estimation and Prediction Using Hidden Markov Models in Heterogeneous Access

Networks. In Proceedings of the Australasian Telecommunication Networks and Applications Conference (ATNAC), Brisbane,
Australia, 7–9 November 2012. [CrossRef]

8. Wu, Q.; Zhang, M.; Zheng, R.; Lou, Y.; Wei, W. A QoS-satisfied Prediction Model for Cloud-Service Composition Based on a
Hidden Markov Model, Special issue on Applied Mathematics and Algorithms for Cloud Computing and IoT, Hindawi, July
2013. Math. Probl. Eng. 2013, 2013, 387083. [CrossRef]

9. Hendrawan. RRC success rate accessibility prediction on SAE/LTE network using Markov chain model. In Proceedings of the
2017 11th International Conference on Telecommunication Systems Services and Applications (TSSA), Lombok, Indonesia, 26–27
October 2017. [CrossRef]

10. Amirrudin, N.A.; Ariffin, S.H.S.; Abd Malik, N.N.N.; Ghazali, N.E. Mobility Prediction via Markov Model in LTE Femtocell. Int.
J. Comput. Appl. 2013, 65, 18.

11. Wang, Y. Evaluating Wireless Network Accessibility Performance Via Clustering-Based Model: An analytic methodology. In
Proceedings of the Wireless Telecommunications Symposium (WTS), London, UK, 18–20 April 2016. [CrossRef]

12. Hendrawan, N.A. Accessibility Degradation Prediction on LTE/SAE Network Using Discrete-Time Markov Chain (DTMC)
Model. J. ICT Res. Appl. 2019, 13, 1–18. [CrossRef]

13. Iyer, A.P.; Li, L.E.; Stoica, I. Automating Diagnosis of Cellular Radio Access Network Problems. In Proceedings of the 23rd
Annual International Conference on Mobile Computing and Networking, Snowbird, UT, USA, 16–20 October 2017. [CrossRef]

14. Oluwafemi, E.O.; Nnonye, O.E.; Okechukwu, U.; Adewale, A.L. Prediction of Call Drops in GSM Network using Artificial Neural
Network. J. Teknol. Syst. Comput. 2019, 7, 38–46.

15. Akanbasiam, J.A.; Ngala, D.K. The Study of Quality of Service on a Major Mobile Network Operator in Ghana. IOSR J. Electron.
Commun. Eng. (IOSR-JECE) 2017, 12, 21–25. [CrossRef]

https://developers.google.com/machine-learning/glossary#multi-class
http://doi.org/10.1109/ISCE.2005.1502385
http://doi.org/10.1109/ATNAC.2012.6398083
http://doi.org/10.1155/2013/387083
http://doi.org/10.1109/TSSA.2017.8272940
http://doi.org/10.1109/WTS.2016.7482030
http://doi.org/10.5614/itbj.ict.res.appl.2019.13.1.1
http://doi.org/10.1145/3117811.3117813
http://doi.org/10.9790/2834-1204012125


Eng. Proc. 2022, 18, 9 11 of 11

16. Olayinka, O.O.; Olukemi, S.O.; Chukwuemeka, O. Assessment of Quality of Service of Mobile Network Operators in Akure. Int.
J. Bus. Adm. 2019, 10, 3. [CrossRef]

17. ETSI TS 132 410, Version 9.0.0, Release 9. 2010. Available online: https://cdn.standards.iteh.ai/samples/32882/33cf7e8727da4bf7
bb448687b19604f9/ETSI-TS-132-410-V9-0-0-2010-01-.pdf (accessed on 19 May 2022).

18. Porod, U. Dynamics of Markov Chains for Undergraduates. 19 February 2021. Available online: https://www.math.northwestern.
edu/documents/book-markov-chains.pdf (accessed on 17 June 2022).

19. Abdulkareem, H.A.; Tekanyi, M.S.; Kassim, A.Y.; Zakariyya, Z.M.; Almustapha, M.D.; Abdu-Aguye, U.F.; Adamu, H. Analysis of
a GSM Network Quality of Service Using Call Drop Rate and Call Setup Success Rate as Performance Indicators. Eur. J. Electr.
Eng. 2020, 9, 113–121.

20. Omer, A.S.; Woldegebreal, D.H. Review of Markov Chain and Its Applications in Telecommunication Systems. In E-Infrastructure
and E-Services for Developing Countries; Sheikh, Y.H., Rai, I.A., Bakar, A.D., Eds.; AFRICOMM 2021; Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications Engineering; Springer: Cham, Switzerland, 2022; Volume 443.
[CrossRef]

21. Paranthaman, V.V.; Mapp, G.; Shah, P.; Nguyen, H.X.; Ghosh, A. Exploring Markov Models for the Allocation of Resources for
Proactive Handover in a Mobile Environment. In Proceedings of the IEEE 40th Local Computer Networks Conference Workshops
(LCN Workshops), Clearwater Beach, FL, USA, 26–29 October 2015. [CrossRef]

http://doi.org/10.5430/ijba.v10n3p118
https://cdn.standards.iteh.ai/samples/32882/33cf7e8727da4bf7bb448687b19604f9/ETSI-TS-132-410-V9-0-0-2010-01-.pdf
https://cdn.standards.iteh.ai/samples/32882/33cf7e8727da4bf7bb448687b19604f9/ETSI-TS-132-410-V9-0-0-2010-01-.pdf
https://www.math.northwestern.edu/documents/book-markov-chains.pdf
https://www.math.northwestern.edu/documents/book-markov-chains.pdf
http://doi.org/10.1007/978-3-031-06374-9_24
http://doi.org/10.1109/LCNW.2015.7365938

	Introduction 
	Accessibility and Retainability KPIs 
	Accessibility 
	Retainability 

	Discrete-Time Markov Chain 
	Transition Probability Matrix 
	Initial (Probability or State) Distribution 
	Steady-State Distribution 
	Transition Diagram 

	Results and Discussions 
	Data Collection and Preprocessing 
	Clustering 
	KPI Threshold for States Definition 
	Separate Prediction 
	Joint Prediction 
	State Prediction 
	Evaluation Metric 

	Conclusions 
	References

