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Abstract: We present a novel approach that combines the concept of reconstructed phase spaces with
neural network time-series predictions. The presented methodology aims to reduce the parametriza-
tion problem of neural networks and improve autoregressive neural network time-series predictions.
First, the idea is to interpolate a dataset based on its reconstructed phase space properties and then
filter an ensemble prediction based on its phase space properties. The corresponding ensemble
predictions are made using randomly parameterized LSTM (Long Short-Term Memory) neural net-
works. These neural networks then produce a multitude of auto-regressive predictions, which are
then filtered to achieve a smooth reconstructed phase space trajectory. Thus, we can circumvent the
problem of parameterizing the neural network for each dataset individually. Here, the interpolation
and the ensemble prediction aim to produce a smooth trajectory in a reconstructed phase space. The
best results are compared to a single hidden layer LSTM neural network and benchmark results from
the literature. The results show that the baseline predictions are outperformed for all three discussed
datasets, and one of the benchmark results from the literature is bested by the presented approach.

Keywords: phase space reconstruction; LSTM; neural networks; ensemble prediction; stochastic
interpolation

1. Introduction

The rise of artificial intelligence, i.e., machine learning and deep learning, motivates
many researchers to perform predictions and analyses based on historical data using
these methods, rather than employing mechanistic expert models. The reason for making
predictions in the first place is to answer important questions, e.g., future population
estimates, predicting epileptic seizures, and estimating future stock market prices. The
outcomes of these predictions are encouraging, e.g., solar radiation can be predicted using
machine learning methods [1].

One reason for machine learning’s poor performance is an overall lack of data. A
means of overcoming the lack of data for time-series analysis approaches is to employ an
interpolation technique to increase the amount of data. Here, one can choose from many
different techniques, such as polynomial, fractal [2], or stochastic interpolation methods [3].
In this article, we use an improved version of the Brownian multi-point bridges developed
by [3], which is discussed and validated in detail in ref. [4]. For simplicity, we refer to this
method as PhaSpaSto interpolation, which is an abbreviation for phase space trajectory
smoothing stochastic interpolation.

Next, when it comes to the autoregressive prediction of time-series data, we want
to consider the properties of the reconstructed phase space trajectories of a given set of
time-series data, i.e., we want the reconstructed phase space trajectory of our prediction to
be as smooth as possible.
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Thus, we want to find out to what extent the idea of the reconstructed phase spaces of
time-series data can be used to improve neural network time-series predictions. For this
reason, we present the following scheme, depicted in Figure 1. We first interpolate a given
time series using the discussed PhaSpaSto interpolation (Section 4); next, we employ the
randomly parameterized neural networks developed in ref. [5] (Section 6), thus generating
a multitude of different autoregressive predictions for each set of time-series data. Finally,
we filter these predictions based on the smoothness of their reconstructed phase space
trajectories, i.e., we want to keep only the smoothest phase space trajectories (Section 6.2).

Figure 1. Schematic depiction of the filtering process. The whole pipeline is applied, first, to the
original non-interpolated data, and second, to the stoch.-interpolated data set.

This article is structured as follows. The current section, i.e., Section 1, provides a brief
introduction and explains the developed scheme. Section 2 lists related work and briefly
describes the connections to this article. Section 3 discusses the idea of reconstructed phase
spaces and introduces the used terminology and notations. Next, Section 4 introduces
the employed stochastic interpolation method, whereas Section 6 describes the employed
neural network approach for autoregressive time-series prediction and the prediction filter.
All datasets are described and plotted with their interpolation and corresponding phase
space reconstructions in Section 5. Section 7 gives all prediction results. Section 8 concludes
this article and gives ideas for future research.

2. Related Work

The presented research is mainly motivated by the findings of [2,4–6]. This section
will briefly describe the mentioned publications, list them chronologically, i.e., by their
publication date, and put them into context.

• Ref. [7]: This publication presents a method to determine if images are blurry. For this
purpose, the second derivatives of grey-scale images are taken, and the corresponding
variance over all pixels is analyzed. This concept is used in the presented article. We
adapted the idea of variances of second derivatives, which is discussed in Section 4.2.

• Ref. [3]: This publication presents a novel stochastic interpolation technique where
the idea of a Brownian bridge, i.e., a constrained fractional Brownian motion (fBm),
is extended to more than two points, i.e., to multi-point fractional Brownian bridges.
This method is the basis for the employed interpolation techniques and provides the
population of random interpolations for the genetic algorithm.

• Ref. [2]: In this publication, a fractal interpolation to interpolate univariate time-
series data is presented. This research suggests that different interpolation methods
for univariate time-series data may yield predictions of different quality. Thus, as
presented here, employing an attractor-based interpolation is an obvious next step
compared to a fluctuation-based interpolation.

• Ref. [5]: This publication is a continuation of [2]. The fractal interpolation and
LSTM neural network approach is continued as ensembles of predictions. Randomly
parameterized LSTM neural networks are generated from non-, linear-, and fractal-
interpolated data. Afterward, these predictions are filtered based on their signal
complexities. Contrary to this publication, we test LSTM neural network predictions
of stochastically interpolated data.

• Ref. [4]: This publication validates a stochastic interpolation based on the smoothness
of reconstructed phase space trajectories and Brownian Bridges, i.e., the PhaSpaSto
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interpolation. The basic idea is to filter/improve a multitude of stochastic interpola-
tions of the same time-series data using a genetic algorithm and the variance of second
derivatives along a reconstructed phase space trajectory to generate smooth phase
space embeddings.
The interpolation technique developed in this paper is briefly described in Section 4
and used to improve the presented predictions.

3. Phase Space Reconstruction

First, we need to introduce the concept of reconstructed phase spaces [8,9].
We estimate a phase space embedding for all data under study. To find a suitable

phase space embedding, one has to determine two parameters, the embedding dimension
dE and the time delay τ.

To estimate the time delay τ, i.e., the delay between two consecutive time steps, we
use the method based on the average information between two signals [10].

To estimate the embedding dimension dE, we use the algorithm of false nearest
neighbors [11].

The phase space embedding for a given signal [x1, x2, . . . , xn], thus, is

~y(i) =
[

xi, xi+τ , . . . , xi+(dE−1)∗τ

]
, (1)

and a corresponding three-dimensional phase space embedding, thus, is

~y(i) = [xi, xi+τ , xi+2τ ]. (2)

4. PhaSpaSto Interpolation

The used interpolation technique consists of two parts: first, the multi-point fractional
Brownian Bridges from [3], and second, a corresponding genetic algorithm choosing the
best parts of the so-created fractional Brownian bridges.

4.1. Multi-Point Fractional Brownian Bridges

The employed genetic algorithm is fueled by a population of stochastically interpolated
time-series data—in our case, multi-point fractional Brownian bridges. To generate these
stochastically interpolated time-series data, multi-point fractional Brownian bridges [3]
were used. Thus, we briefly summarize this approach.

We consider a Gaussian random process X(t), whose covariance is defined as
C(t, t′) = 〈X(t)X(t′)〉. In the following, we focus on fractional Browian motion where
the covariance is given according to 〈X(t)X(t′)〉 = 1

2
(
t2H + t′2H − |t− t′|2H), where H is

the Hurst exponent. To elucidate our interpolation scheme, we first define a so-called
fractional Brownian bridge [12,13], which is a construction of fBm starting from 0 at t = 0
and ending at X1 at t = t1, i.e.,

XB(t) = X(t)− (X(t1)− X1)
〈X(t)X(t1)〉
〈X(t1)2〉 . (3)

This construction ensures that XB(t1) = X1, which is also depicted in Figure 1. This
single bridge can now be generalized to an arbitrary number of (non-equidistant) prescribed
points Xi at ti by virtue of a multi-point fractional Brownian bridge [3]

XB(t) = X(t)− (X(ti)− Xi)σ
−1
ij
〈

X(t)X(tj)
〉

, (4)

where σij = 〈X(ti)X(tj)〉 denotes the covariance matrix. Furthermore, we imply summation
over identical indices. The latter linear operation on the Gaussian random process X(t)
ensures that the bridge takes on exactly the values Xk at tk, which can be seen from
XB(tk) = X(tk)− (X(ti)− Xi)σ

−1
ij σkj = X(tk)− (X(ti)− Xi)δik = Xk, where δik denotes
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the Kronecker delta. Hence, this method allows for the reconstruction of a sparse signal,
where small-scale correlations are determined by the choice of the Hurst exponent H.

4.2. Genetic Algorithm

We build a simple genetic algorithm to find the best possible interpolation given the
data’s phase space reconstruction using Taken’s theorem. We want our reconstructed phase
space curve to be as smooth as possible and thus define the trajectory’s fitness as follows.

The basic idea is to use a concept from image processing, i.e., the blurriness of a picture,
and apply it to phase space trajectories. We want our trajectory to be as blurry, i.e., as
smooth, as possible. In image processing, the blurriness is determined via second-order
derivatives of grey-scale images at each pixel [7]. We employ this concept, but instead of
using it at each pixel, we calculate the variance of second-order derivatives along our phase
space trajectories. Similar to the idea from image processing, where the low variance of
second-order derivatives implies more blurriness, curves with a low variance of second-
order derivatives exhibit comparatively smooth trajectories. The reason here is intuitively
apparent: whereas curves with a high variance of second-order derivatives have a range of
straight and pointy sections, curves with a low variance of second-order derivatives have a
similar curvature along the trajectory and thus are smoother. Hence, in order to guarantee
smoothness along the trajectory, we want this variance to be as low as possible, which thus
is our loss L. Concluding, our fitness is maximal when our loss L is minimal.

Again, we start with the phase space vector and the corresponding embedding dimen-
sion dE and time delay τ (see Section 3) of each signal as

~y(i) =
[

xi, xi+τ , . . . , xi+(dE−1)·τ

]
. (5)

Thus, we have one component for each dimension of the phase space. Consequently,
we can write the individual components as

yj(i) = xi+(j−1)∗τ , (6)

where j = 1, 2, . . . , dE. We then take the second-order finite difference central derivative of
a discrete function [14]

u′′j (i) = xi+(j−1)∗τ+1 − 2xi+(j−1)∗τ + xi+(j−1)∗τ−1 , (7)

at each point, and for each component. Next, we add up all the components as

u′′(i) =

√√√√ dE

∑
j=1

u′′j (i)
2 . (8)

Then, finally, we use the variance of the absolute values of second derivatives along
the phase space curve as our loss L of a phase space trajectory:

L = Vari
[
u′′(i)

]
. (9)

The employed genetic algorithm consists of the following building blocks.
A candidate solution is an interpolated time series using a random Hurst exponent

H ∈ (0; 1). The corresponding population of candidates is, e.g., 1000 of these stochastically
interpolated time-series data with random Hurst exponents. A population of interpolated
time-series data is generated using the multi-point Brownian bridges such that, for each
member of the population, a random Hurst exponent with H ∈ (0; 1) is chosen, which then
defines the interpolation of the member of the population. After generating the population,
all members are sorted with respect to their fitness, i.e., the lower the loss L, the better an
interpolation is. The mating is implemented such that only the best 50%, with respect to
fitness, can mate to produce new offspring. The mating is done such that, for every gene,
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i.e., each interpolation between two data points, there is a 50:50 chance to inherit it from
either one of the parents. The mutation was implemented such that, in each generation,
there is a 20% chance that a randomly chosen interpolated time series is replaced with a
new interpolated time series within a corresponding randomly chosen new Hurst exponent.
Moreover, we implemented a criterion for aborting the program, which was fulfilled if
the population fitness mean did not change for ten generations. This described procedure
was then performed for 1000 generations. However, the 1000 generations were never
reached, as the criterion for abortion was always triggered, and the program was ended,
thus yielding the best interpolation with respect to the fitness of the phase space trajectories
before reaching the 1000th generation.

5. Datasets

We chose three datasets to test and demonstrate our approach. Two of the featured
datasets are from the Time Series Data Library [15] and thus are known test datasets and
provide us with benchmark results, which are discussed in Section 7.4.

The third dataset is the annual maize yields in Austria, which can be obtained from
http://www.fao.org/faostat/, accessed on 21 July 2022. This third dataset is considered
the most challenging of the three datasets for two reasons. First, it is an agricultural dataset,
i.e., it is affected by the weather, genetic improvements of the plants, varying fertilization
strategies, etc., meaning that we will most likely not discover any reasonable seasonalities
and or trends, despite the apparent increase in maize yields due to various improvements
in agriculture. Second, this dataset is collected annually for all of Austria, i.e., a lot of the
information contained in the dataset is lost due to the annual and regional averaging. Thus,
we conclude that it will be challenging or impossible to predict annual maize yields several
years ahead effectively.

5.1. Car Sales in Quebec Dataset

This is a dataset from the Time Series Data Library [15]. It depicts monthly car sales in
Quebec from January 1960 to December 1968, with an overall 108 data points.

The corresponding phase space embedding, with a time delay τ = 1, was detrended
by subtracting a linear fit from the data and normalized such that the range of all data is
between [0, 1]. The interpolated time series and the corresponding reconstructed phase
space are depicted in Figure 2.
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Figure 2. Time-series and attractor plots for the annual car sales in Quebec dataset. (a) Stoch.
interpolated, 13 interpolation points, time-series plot; (b) non-interpolated, reconstructed attractor
plot, detrended, normalized; (c) stoch.-interpolated, 13 interpolation points, reconstructed attractor
plot, detrended, normalized. The rainbow colors in the phase space plots correspond to different
steps in time. The spectrum starts with blue (early) and ends with red (later).

5.2. Monthly International Airline Passengers Dataset

This is a dataset from the Time Series Data Library [15]. It depicts monthly interna-
tional airline passengers from January 1949 to December 1960, with an overall 144 data
points, given in units of 1000.

The corresponding phase space embedding, with a time delay τ = 1, was detrended
by subtracting a linear fit from the data and normalized such that the range of all data is

http://www.fao.org/faostat/
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between [0, 1]. The interpolated time series and the corresponding reconstructed phase
space are depicted in Figure 3.
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Figure 3. Time-series and attractor plots for the monthly international airline passengers dataset.
(a) Stoch.-interpolated, 13 interpolation points, time-series plot; (b) non-interpolated, reconstructed
attractor plot, detrended, normalized; (c) stoch.-interpolated, 13 interpolation points, reconstructed
attractor plot, detrended, normalized. The rainbow colors in the phase space plots correspond to
different steps in time. The spectrum starts with blue (early) and ends with red (later).

5.3. Annual Maize Yields in Austria

This is a dataset of the annual yields of maize in Austria ranging from 1961 to 2017, with
an overall 57 data points. This dataset can be downloaded at http://www.fao.org/faostat/,
accessed on 21 July 2022. The corresponding phase space embedding, with a time delay
τ = 1 and an embedding dimension of dE = 3, was detrended by subtracting a linear
fit from the data and normalized such that the range of all data is between [0, 1]. The
interpolated time series and the corresponding reconstructed phase space are depicted in
Figure 4.
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Figure 4. Time-series and attractor plots for the annual maize yields in Austria data set. (a) Stoch.-
interpolated, 13 interpolation points, time-series plot; (b) non -interpolated, reconstructed attractor
plot, detrended, normalized; (c) stoch.-interpolated, 13 interpolation points, reconstructed attractor
plot, detrended, normalized. The rainbow colors in the phase space plots correspond to different
steps in time. The spectrum starts with blue (early) and ends with red (later).

5.4. Data Preprocessing

Two steps of preprocessing were performed before forecasting the featured datasets.
First, each dataset was made stationary by subtracting a linear fit. Second, each dataset was
scaled to [0.1, 0.9].

Finally, each dataset was split into a train and test dataset with an 80%/20% ratio.

6. LSTM Neural Network Time-Series Prediction

LSTMs are a category of recurrent neural networks (RNNs). RNNs are capable of
using feedback or recurrent connections to cope with time-series data.

LSTMs [16] feature a component called a memory block to enhance their capability
to model long-term dependencies. This memory block is a recurrently connected subnet
containing two functional modules, i.e., the memory cell and the corresponding gates. The
task of the memory cell is to remember the temporal state of the neural network. On the

http://www.fao.org/faostat/
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other hand, the gates are responsible for controlling the information flow and consist of
multiplicative units.

6.1. Randomly Parameterized Neural Networks

In this article, we are using an approach developed in [5]. The idea is to generate
many randomly parameterized neural networks to build ensemble predictions based on
the phase space properties of the autoregressively produced predictions. An autoregressive
prediction is a one-step-at-a-time prediction, whereas old outputs are used as inputs for the
next step.

These randomly parameterized neural networks feature one to five hidden LSTM
layers, a hard sigmoid activation function in the hidden and input layers, and a rectified linear
unit as the output activation function. No dropout criterion or regularization was used.

We used the following ranges for the parameters for our randomly parameterized
neural network implementation.

• Number of input nodes: 1→ size of the training data − 1
• Number of neurons for each hidden layer: 1→ 50
• Batchsizes: 2→ 128
• Epochs: 1→ 50

We used LSTM architectures for this research, one can use any type of neural network
cell for this approach.

6.2. Prediction Filter

The so-generated autoregressive predictions are then filtered using the criterion for
smooth phase space trajectories from Section 4.2, i.e., we want the variance of second
derivatives along a reconstructed phase space trajectory to be as low as possible. We
thus randomly chose 1 to 10 predictions from the whole set of predictions. Next, these
predictions are averaged to form an ensemble prediction. This ensemble prediction is
merged with the training data. Then, the variance of second derivatives along the phase
space trajectory is analyzed. This process is repeated 1 million times. The set of averaged
predictions with the lowest variance of second derivatives is kept. On all plots, this
procedure is referred to as loss_rand.

7. Experiments and Results

In this Section, we provide the experimental setup and the corresponding results.
First, each dataset was interpolated using PhaSpaSto interpolation (Section 4) with

varying interpolation points. For the monthly international airline passengers and the
car sales in Quebec datasets, interpolations with the following numbers of interpolation
points were performed: NI = {1, 3, 5, 7, 9, 11, 13}. For the annual maize yields in Austria,
this range was changed to NI = {9, 11, 13, 15} to save computational resources. Further,
we produced 500 randomly parameterized neural network predictions for the monthly
international airline passengers and car sales in Quebec datasets. In contrast, for the annual
maize yields in Austria dataset, 1000 of these predictions were produced. These multitudes
of predictions were created for the non-interpolated and the interpolated datasets. As
initially mentioned, the whole scheme is depicted in Figure 1.

All of these predictions were analyzed using the root mean squared error (RMSE).
Here, we used the RMSE on both a normalized dataset, i.e., the dataset and the prediction
are scaled to be ∈ [0, 1] (denoted as RMSE [0, 1], Equation (10)), and the regular dataset
and prediction (denoted as RMSE, Equation (10)).

All errors for all datasets are collected in Table 1. The corresponding plots for the car
sales in Quebec dataset are collected in Figure 5, the results for the monthly international
airline passengers are plotted in Figure 6, and finally, the results for the annual maize
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yields in Austria are depicted in Figure 7. Further, we discuss each dataset separately in
the following.

RMSE =

(
1
n

n

∑
i=1

[x̂i − xi]
2

) 1
2

, (10)

Here, x̂i are the predicted values, xi is the ground truth, and n is the number of samples.

Table 1. Results for all datasets and experiments, i.e., interpolated, non-interpolated, filtered,
and unfiltered.

Data Approach RMSE [0, 1] RMSE
Car Sales
in Quebec

not interpolated,
unfiltered

0.31148 6395.04838

Car Sales
in Quebec

not interpolated,
filtered

0.11635 1927.52494

Car Sales
in Quebec

stoch. interpolated,
NI = 13, unfiltered

0.24762 5104.42560

Car Sales
in Quebec

stoch. interpolated,
NI = 1, filtered

0.07958 1617.40461

Monthly International
Airline Passengers

not interpolated,
unfiltered

0.19676 101.92294

Monthly International
Airline Passengers

not interpolated,
filtered

0.06823 35.34095

Monthly International
Airline Passengers

stoch. interpolated,
NI = 13, unfiltered

0.17180 86.28560

Monthly International
Airline Passengers

stoch. interpolated,
NI = 9, filtered

0.05286 21.20474

Annual Maize
Yields Austria

not interpolated,
unfiltered

0.23536 18,253.10327

Annual Maize
Yields Austria

not interpolated,
filtered

0.16424 12,737.42487

Annual Maize
Yields Austria

stoch. interpolated,
NI = 15, unfiltered

0.20499 15,442.32505

Annual Maize
Yields Austria

stoch. interpolated,
NI = 15, filtered

0.14563 11,227.39159

7.1. Car Sales in Quebec Dataset

All errors for the car sales in Quebec dataset are collected in Table 1, and the corre-
sponding plots are collected in Figure 5.

When comparing the errors for the results with and without interpolation, we see that
the interpolated results are reduced, i.e., the unfiltered, interpolated results have a lower
error than the unfiltered, not interpolated ones. The same is true for the filtered results.

Next, the filtered results consistently drastically outperformed the unfiltered ones.
Exactly this behavior is depicted in Figure 5. The overall best result is the interpolated and
filtered prediction approach, which can be seen in Figure 5d.
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Figure 5. Autoregressive prediction results for the car sales in Quebec dataset. (a) Non-interpolated,
non-filtered; (b) non-interpolated, filtered; (c) stoch. interpolated, 13 interpolation points, non-filtered;
(d) stoch. interpolated, 1 interpolation point, filtered.

7.2. Monthly International Airline Passengers

All errors for the monthly international airline passengers dataset are collected in
Table 1, and the corresponding plots are collected in Figure 6.

When comparing the errors for the results with and without interpolation, we see that
the errors for the interpolated results are reduced, i.e., the unfiltered interpolated results
have a lower error than the unfiltered, not interpolated ones. The same is true for the
filtered results.

Next, the filtered results always drastically outperformed the unfiltered ones. Exactly
this behavior is depicted in Figure 6. The overall best result is the interpolated and filtered
prediction approach, which can be seen in Figure 6d.
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Figure 6. Autoregressive prediction results for the car sales in Quebec dataset. (a) Non-interpolated,
non-filtered; (b) non-interpolated, filtered; (c) stoch. interpolated, 13 interpolation points, non-filtered;
(d) stoch. interpolated, 9 interpolation points, filtered.

7.3. Annual Maize Yields in Austria Dataset

All errors for the monthly international airline passengers dataset are collected in
Table 1, and the corresponding plots are collected in Figure 7.

When comparing the errors for the results with and without interpolation, we see that
the interpolated results are reduced, i.e., the unfiltered, interpolated results have a lower
error than the unfiltered, not interpolated ones. The same is true for the filtered results.

Next, the filtered results consistently drastically outperformed the unfiltered ones.
Exactly this behavior is depicted in Figure 7. The overall best result is the interpolated and
filtered prediction approach, which can be seen in Figure 7d.

This dataset is considered to be the most difficult of the three featured datasets, and
although our predictions are still off, as can be seen in Figure 7d, the performed procedures,
i.e., PhaSpaSto interpolation and the prediction filter, do improve the accuracy of the
forecast. Further, the result depicted in Figure 7d suggests that the employed neural
networks learned some inherent behavior, especially when taking into account the initial
variations after the train/test cut.
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Figure 7. Autoregressive prediction results for the car sales in Quebec dataset. (a) Non-interpolated,
non-filtered; (b) non-interpolated, filtered; (c) stoch. interpolated, 15 interpolation points, non-filtered;
(d) stoch. interpolated, 15 interpolation points, filtered.

7.4. Benchmark and Baseline Predictions

We finally provide some baseline and benchmark results for the conducted exper-
iments. We used an LSTM neural network with one hidden layer as a baseline predic-
tion. Each neural network was trained with a batch size of 2 and varying epochs. Fur-
ther, verbose was set to 2. For the activation of the neural network, hard_sigmoid was
chosen, and the activation function of the output layer was relu. For the initialization,
glorot_uniform was used for the LSTM layer, orthogonal was used as the recurrent ini-
tializer, and glorot_uniform for the Dense layer. For the LSTM layer, the bias was set
to use_bias=True, with a corresponding bias_initializer="zeros". Further, no con-
straints, regularizers, or dropout criteria were used for the recurrent and the Dense layers.
As an optimizer, rmsprop was used and the loss was calculated using mean_squared_error.
The output node returned only one result, i.e., the next time step. The varying architectures
are collected in Table 2 and the corresponding predictions are depicted in Figure 8.

Table 2. Errors for the baseline predictions for each dataset.

Data Architecture RMSE [0, 1] RMSE

Car Sales
in Quebec

20 input nodes
30 hidden layer neurons

45 training epochs
0.08593 1764.38996

Monthly International
Airline Passengers

20 input nodes
30 hidden layer neurons

40 training epochs
0.05899 30.56100

Annual Maize
Yields Austria

20 input nodes
30 hidden layer neurons

18 training epochs
0.16617 12,886.99962
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Figure 8. LSTM baseline predictions. The red line denotes the autorgressive single step-by-step
prediction, which is featured in Table 2. (a) Car sales in Quebec dataset; (b) monthly international
airline passengers dataset; (c) annual maize yields in Austria dataset.

The featured baseline predictions, though reasonable, are consistently outperformed
by the interpolated filtered results from our main experiments—see Table 1—in terms of
RMSE. Here, we want to highlight that the baseline neural network did not capture the
characteristics of the annual maize yields dataset. This may be due to poor parameterization
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or the fact that a single hidden layer is not sufficient to capture the dynamics of this dataset.
Still, we tuned the employed neural networks by hand, and the results for the other dataset
show that neural networks of these sizes are sufficient for univariate time-series data of this
length. The best ensemble result, in comparison, provides a drastically improved result
compared to the baseline prediction.

When it comes to benchmark results from the literature, we found the best result for
the monthly international airline passengers dataset in ref. [17], with an RMSE of 13.0 for
a hybrid MLP-ARIMA approach, which is superior to our baseline of 30.6 and our best
ensemble result of 21.2. Thus, we conclude that our ensemble approach with the presented
specifications cannot outperform state-of-the-art methods for this dataset.

For the monthly car sales in Quebec dataset, we found a comparable result in ref. [18],
with an RMSE [0, 1] of 0.08143 for the additive Holt–Winters method. Our baseline LSTM
result for this dataset has an RMSE [0, 1] of 0.08593 and our best ensemble results is at
0.07958. We conclude that our ensemble prediction is able to outperform the best results
from ref. [18] for this dataset.

As far as the authors know, there is no benchmark result for the annual maize yields
in Austria dataset. Thus, we stick to the previously presented baseline prediction, which is
outperformed by the presented ensemble prediction.

7.5. Summary

We briefly summarize our findings and point out the main results below.

1. The presented stochastic interpolation method—for simplicity, referred to as PhaS-
paSto interpolation—can be used to improve retrogressive neural network time-series
predictions. This is supported by the findings of Table 1. Here, we can see that both
the filtered and unfiltered interpolated results outperformed those without interpo-
lation. The same is true for all filtered results, i.e., the interpolated results always
outperformed the unfiltered ones. These results are depicted in Figures 5–7.

2. Filtering the multitude of predictions based on the second derivatives along their
reconstructed phase space portraits drastically improved the results for all datasets.
The corresponding results are, again, collected in Table 1 and Figures 5–7.

3. The presented interpolated and filtered approach outperformed the baseline and
benchmark predictions for the monthly car sales in Quebec dataset, discussed in
Section 7.4.
Though the interpolated and filtered ensemble approach did outperform a given
baseline prediction for the monthly international airline passengers dataset, the fea-
tured benchmark prediction from the literature still outperformed our approach on
this dataset.
We provide a baseline prediction for the annual maize yields in Austria dataset,
which was outperformed using our interpolated and filtered ensemble approach,
discussed in Section 7.4. We cannot provide a benchmark result from the literature for
this dataset.

4. The employed neural network ensembles were not individually parameterized for
each dataset. Instead, we filtered the predictions according to the phase space prop-
erties of each dataset. Thus, we could circumvent the problem of parameterizing
neural networks.

8. Conclusions

This article presents an experiment to test the applicability of a novel interpolation
method—for simplicity, abbreviated as PhaSpaSto interpolation—combined with randomly
parameterized neural network autoregressive predictions. These predictions are then
filtered using the variance of second derivatives along a reconstructed phase space trajectory
to only keep forecasts that ensure a smooth phase space trajectory.

First, a given time series is interpolated using the featured interpolation method. It is
forecast by generating multiple differently parameterized neural networks, each providing
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an autoregressive prediction of the data under study. Finally, this multitude of predictions
is filtered such that the result guarantees a smooth reconstructed phase space trajectory.

The results show that this novel approach outperforms the provided baseline predic-
tions. Further, we were able to best a given benchmark result from the literature for one of
the three discussed datasets.

The concept of reconstructed phase spaces can be applied to interpolate time series to
guarantee a smooth phase space trajectory, which, in turn, improves the accuracy of our
neural network predictions. Further, filtering ensemble predictions based on their phase
space properties, i.e., the smoothness of their phase space trajectories, improves the pre-
sented ensemble predictions. Moreover, we can circumvent the problem of parameterizing
neural networks by generating many predictions and filtering them based on their phase
space properties.

Ideas for future research in this field are, e.g., to test the presented filter on other
state-of-the-art ensemble approaches or to test the robustness of neural network predictions
using the presented PhaSpaSto and related interpolation techniques. We further want to
highlight that the proposed methodology improves the accuracy on the featured annual
maize yields dataset, which the authors expected to be a challenging dataset. Thus, another
idea for future research might be to specifically target challenging time-series prediction
problems, such as forecasting agricultural or financial time-series data.
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