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Abstract: The problem of testing the equality of generating processes of two multivariate time series
is addressed in this work. To this end, we construct two tests based on a distance measure between
stochastic processes. The metric is defined in terms of the quantile cross-spectral densities of both
processes. A proper estimate of this dissimilarity is the cornerstone of the proposed tests. Both
techniques are based on the bootstrap. Specifically, extensions of the moving block bootstrap and the
stationary bootstrap are used for their construction. The approaches are assessed in a broad range of
scenarios under the null and the alternative hypotheses. The results from the analyses show that the
procedure based on the stationary bootstrap exhibits the best overall performance in terms of both
size and power. The proposed techniques are used to answer the question regarding whether or not
the dotcom bubble crash of the 2000s permanently impacted global market behavior.

Keywords: multivariate time series; quantile cross-spectral density; frequency domain; moving block
bootstrap; stationary bootstrap; dotcom bubble

1. Introduction

Comparison of time series often arises in multiple fields including machine learning,
finance, economics, computer science, biology, medicine, physics, and psychology, among
many others. For instance, it is not uncommon for an investor to have to determine if two
particular assets show the same dynamic behavior over time based on historical data. In
the same way, a physician often needs to find out to what extent two ECG signals recorded
from different subjects exhibit similar patterns. There exist a wide variety of tools that have
been used for these and similar purposes, including cluster analysis [1], classification [2],
outlier detection [3], and comparisons through hypotheses tests [4]. It is worth highlighting
that these techniques have mainly focused on univariate time series (UTS) [5], while the
study of multivariate time series (MTS) has been given limited consideration [6].

In the context of hypotheses tests for time series, spectral quantities have played
an important role. Specifically, testing for the equality of spectral densities has found
substantial interest in the literature. Ref. [7] proposed a test for comparing spectral densities
of stationary time series with unequal sample sizes. The procedure generalizes the class of
tests presented in [8], which are based on an estimate of the L2-distance between the spectral
density and its best approximation under the null hypothesis. Ref. [9] constructed a non-
parametric test for the equality of spectral density matrices based on an L2-type statistic.

This work is devoted to constructing procedures to test for the equality of the so-called
quantile cross-spectral density (QCD) between two independent MTS. Specifically, let X(1)

t

and X(2)
t be two independent, d-variate, real-valued, strictly stationary stochastic processes.

We fix a frequency ω ∈ [−π, π] and a pair of probability levels, τ, τ′ ∈ [0, 1], and we denote
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the corresponding QCD matrices by f(i)(ω, τ, τ′), i = 1, 2. The hypotheses we consider can
be stated as

H0 : f
X(1)

t
= f

X(2)
t

against H1 : f
X(1)

t
6= f

X(2)
t

, (1)

where f
X(1)

t
and f

X(2)
t

are the corresponding sets of QCD matrices defined as

f
X(i)

t
= {f(i)(ω, τ, τ′), ω ∈ [−π, π], τ, τ′ ∈ [0, 1]}. (2)

where i = 1, 2. In order to perform the test in (1), we rely on a distance measure between
stationary stochastic processes, so-called dQCD, which has already being utilized in several
MTS data mining tasks [6,10–12]. This metric is simply the Euclidean distance between two
complex vectors constructed by concatenating the terms in each collection of matrices (2)
for some finite set of frequencies and probability levels. Hence, an equivalence occurs
between the null hypothesis in (1) and the distance dQCD being zero for every possible
set, making an estimate of this metric an appropriate tool to carry out the test in (1). The
high ability of dQCD to detect every possible discrepancy between stochastic processes was
shown in our previous work [10].

Two methods to perform the test in (1) are introduced in this manuscript. They are
based on the moving block bootstrap (MBB) (see [13,14]) and the stationary bootstrap (SB)
(see [15]). Both approaches are compared in terms of size and power by means of a broad
simulation study. Finally, the tests are applied to answer the question regarding whether or
not the dotcom bubble burst of 2000 changed the global behavior of financial markets.

The rest of the paper is organized as follows. The distance dQCD between stochastic
processes is defined in Section 2. The two techniques to carry out the test in (1) are presented
in Section 3. The results from the simulation study performed to compare the proposed
tests are reported in Section 4. Section 5 contains the financial application and Section 6
concludes.

2. A Distance Measure between Stochastic Processes

Let {X t, t ∈ Z} = {(Xt,1, . . . , Xt,d), t ∈ Z} be a d-variate real-valued strictly stationary
stochastic process. Denote by Fj the marginal distribution function of Xt,j, j = 1, . . . , d,
and by qj(τ) = F−1

j (τ), τ ∈ [0, 1], the corresponding quantile function. Fix l ∈ Z and an

arbitrary pair of quantile levels (τ, τ′) ∈ [0, 1]2, and consider the cross-covariance of the
indicator functions I{Xt,j1 ≤ qj1(τ)} and I{Xt+l,j2 ≤ qj2(τ

′)} given by

γj1,j2(l, τ, τ′) = Cov(I{Xt,j1 ≤ qj1(τ)}, I{Xt+l,j2 ≤ qj2(τ
′)}),

for 1 ≤ j1, j2 ≤ d. Taking j1 = j2 = j, the function γj,j(l, τ, τ′), with (τ, τ′) ∈ [0, 1]2, so-called
quantile autocovariance function (QAF) of lag l, generalizes the traditional autocovariance
function.

Under suitable summability conditions (mixing conditions), the Fourier transform of
the cross-covariances is well-defined and the quantile cross-spectral density (QCD) is given by

fj1,j2(ω, τ, τ′) = (1/2π)
∞

∑
l=−∞

γj1,j2(l, τ, τ′)e−ilω, (3)

for 1 ≤ j1, j2 ≤ d, ω ∈ R and τ, τ′ ∈ [0, 1]. Note that fj1,j2(ω, τ, τ′) is complex-valued so
that it can be represented in terms of its real and imaginary parts, which will be denoted by
<(fj1,j2(ω, τ, τ′)) and =(fj1,j2(ω, τ, τ′)), respectively.

For fixed quantile levels (τ, τ′), QCD is the cross-spectral density of the bivariate
process (I{Xt,j1 ≤ qj1(τ)}, I{Xt,j2 ≤ qj2(τ

′)}). Therefore, QCD measures dependence
between two components of the multivariate process over different ranges of their joint
distribution and across frequencies. This quantity can be evaluated for every couple of
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components on a range of frequencies Ω and of quantile levels T in order to obtain a
complete representation of the process, i.e., consider the set of matrices

fX t(Ω, T ) = {f(ω, τ, τ′), ω ∈ Ω, τ, τ′ ∈ T },

where f(ω, τ, τ′) denotes the d× d matrix in C given by

f(ω, τ, τ′) = (fj1,j2(ω, τ, τ′))1≤j1,j2≤d.

Representing X t through fX t , complete information on the general dependence struc-
ture of the process is available. Comprehensive discussions about the favorable properties
of the quantile cross-spectral density are given in [10,16].

According to the prior arguments, a dissimilarity measure between two multivariate
processes, X(1)

t and X(2)
t , could be established by comparing their representations in terms

of the QCD matrices, f
X(1)

t
and f

X(2)
t

, evaluated on a common range of frequencies and

quantile levels. Specifically, for a given set of K different frequencies Ω = {ω1, . . . , ωK}, and
r quantile levels T = {τ1, . . . , τr}, each stochastic process X(u)

t , u = 1, 2, is characterized by

means of a set of r2 vectors {Ψ(u)
τi ,τi′

, 1 ≤ i, i′ ≤ r} given by

Ψ
(u)
τi ,τi′

= (Ψ
(u)
1,τi ,τi′

, . . . , Ψ
(u)
K,τi ,τi′

), (4)

where each Ψ
(u)
k,τi ,τi′

, k = 1, . . . , K consists of a vector of length d2 formed by rearranging by
rows the elements of the matrix f(ωk, τi, τi′).

Once the set of r2 vectors Ψ
(u)
τi ,τi′

is obtained, they are all concatenated in a vector Ψ(u)

in the same way as vectors Ψ
(u)
k,τi ,τi′

constitute Ψ
(u)
τi ,τi′

in (4). Then, we define the dissimilarity

between X(1)
t and X(2)

t by means of:

dQCD(X(1)
t , X(2)

t ) = Ψ(1) −Ψ(2), (5)

where v = (∑n
k=1 |vk|2)1/2, with v = (v1, . . . , vn) being an arbitrary complex vector in Cn,

and | · | stands for the modulus of a complex number. Note that dQCD in (5) can also be
expressed as

dQCD(X(1)
t , X(2)

t ) =
[
<v(Ψ

(1))−<v(Ψ
(2))2 +=v(Ψ

(1))−=v(Ψ
(2))2

]1/2
,

where <v and =v denote the element-wise real and imaginary part operators, respectively.
Since, in practice, we only have finite-length realizations of the stochastic processes

X(1)
t and X(2)

t , the value of dQCD is unknown and a proper estimate must be obtained.
Let {X1, . . . , XT} be a realization from the process (X t)t∈Z so that X t = (Xt,1, . . . , Xt,d),

t = 1, . . . , T. For arbitrary j1, j2 ∈ {1, . . . , d} and (τ, τ′) ∈ [0, 1]2, the authors of [16]
propose to estimate fj1,j2(ω, τ, τ′) considering a smoothed cross-periodogram based on
the indicator functions I{F̂T,j(Xt,j)}, where F̂T,j(x) = T−1 ∑T

t=1 I{Xt,j ≤ x} denotes the
empirical distribution function of Xt,j. This approach extends to the multivariate case for
the estimator proposed by [17] in the univariate setting. More specifically, the rank-based
copula cross periodogram (CCR-periodogram) is defined by

I j1,j2
T,R (ω, τ, τ′) =

1
2πT

dj1
T,R(ω, τ)dj2

T,R(−ω, τ′),

where

dj
T,R(ω, τ) =

T

∑
t=1

I{F̂T,j(Xt,j) ≤ τ}e−iωt.
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The asymptotic properties of the CCR-periodogram are established in Proposition S4.1
of [16]. Like the standard cross-periodogram, the CCR-periodogram is not a consistent esti-
mate of fj1,j2(ω, τ, τ′). To achieve consistency, the CCR-periodogram ordinates (evaluated
on the Fourier frequencies) are convolved with weighting functions WT(·). The smoothed
CCR-periodogram takes the form

Ĝj1,j2
T,R (ω, τ, τ′) =

2π

T

T−1

∑
s=1

WT(ω−
2πs

T
)I j1,j2

T,R (
2πs

T
, τ, τ′), (6)

where

WT(u) =
∞

∑
v=−∞

1
hT

W(
u + 2πv

hT
),

with hT > 0 being a sequence of bandwidths such that hT → 0 and ThT → ∞ as T → ∞,
and W is a real-valued, even weight function with support [−π, π]. Consistency and
asymptotic performance of the smoothed CCR-periodogram Ĝj1,j2

T,R (ω, τ, τ′) are established
in Theorem S4.1 of [16].

By considering the smoothed CCR-periodogram in every component of the vectors

Ψ(1) and Ψ(2), we obtain their estimated counterparts Ψ̂
(1)

and Ψ̂
(2)

, which allow us to
construct a consistent estimate of dQCD by defining

d̂QCD(X(1)
t , X(2)

t ) = Ψ̂
(1) − Ψ̂

(2)
. (7)

Quantity d̂QCD(X(1)
t , X(2)

t ) has been successfully applied to perform clustering of MTS
in crisp [6] and fuzzy [10–12] frameworks.

3. Testing for Equality of Quantile Cross-Spectral Densities of two MTS

In this section, two procedures to address the problem of testing (1) are constructed.
They are based on the distance dQCD defined in (5). Both approaches consider well-known
bootstrap methods for dependent data. The key principle is to draw pseudo-time series
capturing the dependence structure in order to approximate the distribution of d̂QCD under
the null hypothesis.

3.1. A Test Based on the Moving Block Bootstrap

In this section, we introduce a bootstrap test based on a modification of the classical
moving block bootstrap (MBB) method proposed by [13,14]. MBB generates replicates of
the time series by joining blocks of fixed length, which have been drawn randomly with
replacement from among blocks of the original realizations. This approach allows us to
mimic the underlying dependence structure without assuming specific parametric models
for the generating processes.

Given two realizations of the d-dimensional stochastic processes X(1)
t and X(2)

t , de-

noted by X t
(1)

= {X(1)
1 , . . . , X(1)

T } and X t
(2)

= {X(2)
1 , . . . , X(2)

T }, respectively, the procedure
proceeds as follows.

Step 1. Fix a positive integer, b, representing the block size, and take k equal to the smallest
integer greater than or equal to T/b.

Step 2. For each realization, define the block B(i)
j = {X(i)

j , . . . , X(i)
j+b−1}, for j = 1, . . . , q,

with q = T − b + 1. Let B = {B(1)
j , . . . , B(1)

q , B(2)
j , . . . , B(2)

q } be the set of all blocks, those

coming from X t
(1) and those coming from X t

(2).

Step 3. Draw two sets of k blocks, B(i)∗ = {B(i)
1 , . . . , B(i)

k }, i = 1, 2, with equiprobable

distribution from the set B. Note that each B(i)
j , j = 1, . . . , k, i = 1, 2, is a b-dimensional MTS.
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Step 4. Construct the pseudo-time series X t
(i)∗ by considering the first T temporal com-

ponents of B(i)∗, i = 1, 2. Compute the bootstrap version d̂∗QCD of d̂QCD based on the

pseudo-time series X t
(1)∗ and X t

(2)∗.

Step 5. Repeat Steps 3 and 4 a large number B of times to obtain the bootstrap replicates
d̂(1)∗QCD, . . . , d̂(B)∗

QCD.

Step 6. Given a significance level α, compute the quantile of order 1− α, q∗1−α, based on the

set {d̂ (1)∗
QCD, . . . , d̂ (B)∗

QCD}. Then, the decision rule consists of rejecting the null hypothesis H0 if

d̂QCD(X(1)
t , X(2)

t ) > q∗1−α.

Note that, by considering the whole set of blocks B in Step 2, both pseudo-time series

X t
(1)∗ and X t

(2)∗ contain information about the original series X t
(1) and X t

(2) in equal
measure. This way, the bootstrap procedure is able to approximate correctly the distribution
of the test statistic d̂QCD under the null hypothesis even if this hypothesis is not true.

From now on, we will refer to the test presented in this section as MBB.

3.2. A Test Based on the Stationary Bootstrap

The second bootstrap mechanism to approximate the distribution of d̂QCD is an adap-
tation of the classical stationary bootstrap (SB) proposed by [15]. This resampling method
is aimed at overcoming the lack of stationarity of the MBB procedure. Note that the dis-
tance measure dQCD is well-defined only for stationary processes, so it is desirable that a
bootstrap technique based on this metric generates stationary pseudo-time series.

Given two d-dimensional realizations, denoted by X t
(1)

= {X(1)
1 , . . . , X(1)

T } and

X t
(2)

= {X(2)
1 , . . . , X(2)

T }, from the stochastic processes X(1)
t and X(2)

t , respectively, the
SB method proceeds as follows.

Step 1. Fix a positive real number p ∈ [0, 1].

Step 2. Consider the set X̃ t = {X t
(1), X t

(2)}. Draw randomly two temporal observations

from X̃ t. Note that each one of these observations is of the form X(ki)

ji for some ki = 1, 2

and ji = 1, . . . , T, i = 1, 2. Observation X(ki)

ji is the first element of the pseudo-series X t
(i)∗,

i = 1, 2.

Step 3. For i = 1, 2, given the last observation X(ki)

ji , the next bootstrap replication in X t
(i)∗

is defined as X(ki)

ji+1 with probability 1− p, and drawn from the set X̃ t with probability p.

When ji = T, the selected observation is X(2)
1 if ki = 1 and X(1)

1 if ki = 2.

Step 4. Repeat Step 3 until the pseudo-series X t
(1)∗ and X t

(2)∗ contain T observations.

Based on the pseudo-series X t
(1)∗ and X t

(2)∗, compute the bootstrap version d̂∗QCD of d̂QCD.

Step 5. Repeat Steps 3–4 B times to obtain d̂(1)∗QCD, . . . , d̂(B)∗
QCD.

Step 6. Given a significance level α, compute the quantile of order 1− α, q∗1−α, based on the

set {d̂ (1)∗
QCD, . . . , d̂ (B)∗

QCD}. Then, the decision rule consists of rejecting the null hypothesis H0 if

d̂QCD(X(1)
t , X(2)

t ) > q∗1−α.

It is worth remarking that, like the MBB procedure, a proper approximation of the
distribution of d̂QCD under the null hypothesis is also ensured here due to considering the
pooled time series X̃ t in the generating mechanism.

From now on, we will refer to the test presented in this section as SB.
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4. Simulation Study

In this section, we carry out a set of simulations with the aim of assessing the perfor-
mance with finite samples of the testing procedures presented in Section 3. After describing
the simulation mechanism, the main results are discussed.

4.1. Experimental Design

The effectiveness of the testing methods was examined with pairs of MTS realizations,

X t
(1)

= {X(1)
1 , . . . , X(1)

T } and X t
(2)

= {X(2)
1 , . . . , X(2)

T }, simulated from bivariate processes
selected to cover different dependence structures. Specifically, three types of generating
models were considered, namely VARMA processes, nonlinear processes, and dynamic
conditional correlation models [18]. In all cases, the deviation from the null hypothesis of
equal underlying processes was established by means of differences in the coefficients of
the generating models. In each scenario, the degree of deviation between the simulated
realizations is regulated by a specific parameter δ included in the formulation of the models.
The specific generating models concerning each scenario are given below, taking into
account that, unless otherwise stated, the error process (εt,1, εt,2)

ᵀ consists of iid realizations
following a bivariate Gaussian distribution.

Scenario 1. VAR(1) models given by(
Xt,1
Xt,2

)
=

(
0.1 + δ 0.1 + δ
0.1 + δ 0.1 + δ

)(
Xt−1,1
Xt−1,2

)
+

(
εt,1
εt,2

)
.

Scenario 2. TAR (threshold autoregressive) models given by(
Xt,1
Xt,2

)
=

(
(0.9− δ)Xt−1,2 I{|Xt−1,1|≤1} + (δ− 0.3)Xt−1,1 I{|Xt−1,1|>1}
(0.9− δ)Xt−1,1 I{|Xt−1,2|≤1} + (δ− 0.3)Xt−1,2 I{|Xt−1,2|>1}

)
+

(
εt,1
εt,2

)
.

Scenario 3. GARCH models in the form (Xt,1, Xt,2)
ᵀ = (σt,1εt,1, σt,2εt,2)

ᵀ with

σ2
t,1 = 0.01 + 0.05X2

t−1,1 + 0.94σ2
t−1,1,

σ2
t,2 = 0.5 + 0.2X2

t−1,2 + 0.5σ2
t−1,2,(

εt,1
εt,2

)
∼ N

[(
0
0

)
,
(

1 ρt
ρt 1

)]
,

where the correlation between the standardized shocks is given by ρt = 0.9− δ.

Series X t
(1) is always generated by taking δ = 0, while X t

(2) is generated using differ-
ent values of δ, thus allowing us to obtain simulation schemes under the null hypothesis,

when δ = 0 also for X t
(2), and under the alternative hypothesis otherwise.

In each trial, B = 200 bootstrap replicates were considered to approximate the distri-
bution of the test statistic under the null hypothesis. In all cases, we selected the bandwidth
hT = T−1/3 to compute d̂QCD and its bootstrap replicates. This choice ensures the consis-
tency of the smoothed CCR-periodogram as an estimate of QCD (Theorem S4.1 in [16]).
As for the two key hyperparameters, we chose b = T1/3 and p = T−1/3 for the block size
in MBB and the probability in SB, respectively, since both values led to the best overall
behavior of both procedures in our numerical experiments. Note that these choices are also
consistent with the related literature. For instance, ref. [19] addressed the issue of selecting
b in the context of bias and variance bootstrap estimation, concluding that the optimal
block size is of order T1/3. However, since the mean block size in SB corresponds to 1/p, it
is reasonable to select p of order T−1/3.

Simulations were carried out for different values of series length T. Our results
show that both bootstrap procedures exhibit relatively high power when low-to-moderate
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sample sizes are used. However, larger sample sizes are necessary to reach a reasonable
approximation of the nominal level. For this reason, the results included in the next section
correspond to T ∈ {500, 1000}, in the case of the null hypothesis, and T ∈ {100, 200, 300},
in the case of the alternative hypothesis. In all cases, the results were obtained for a
significance level α = 0.05.

4.2. Results and Discussion

The results under the null hypothesis are summarized in Table 1, where the simulated
rejection probabilities of the proposed bootstrap tests are displayed.

Table 1. Simulated rejection probabilities under the null hypothesis for α = 0.05.

Scenario
T Method 1 2 3

500 MBB 0.080 0.070 0.080
SB 0.055 0.055 0.050

1000 MBB 0.070 0.095 0.130
SB 0.040 0.060 0.060

Table 1 clearly shows that both bootstrap techniques exhibit different behaviors under
the null hypothesis. The MBB method provides rejection probabilities greater than expected
for both values of T. In fact, the deviation from the theoretical significance level is more
marked when T = 1000, particularly for Scenario 3. The technique SB seems to adjust the
significance level quite well in all the analyzed scenarios, which makes this test the most
accurate one in terms of size approximation.

The estimated rejection probabilities under the set of considered alternative hypotheses
are provided in Table 2.

Table 2. Simulated rejection probabilities of the bootstrap tests under several alternative hypotheses
determined by the deviation parameter δ.

Scenario 1 Scenario 2 Scenario 3

δ δ δT Method
0.1 0.2 0.3 0.2 0.4 0.6 0.4 0.8 1.2

100 MBB 0.160 0.575 0.980 0.540 0.775 0.990 0.080 0.395 0.950
SB 0.100 0.465 0.960 0.325 0.690 0.910 0.055 0.230 0.870

200 MBB 0.185 0.790 0.995 0.780 0.925 1 0.185 0.725 1
SB 0.095 0.695 0.990 0.625 0.885 0.985 0.080 0.455 0.965

300 MBB 0.225 0.835 1 0.885 0.990 1 0.255 0.840 1
SB 0.130 0.770 1 0.805 0.955 1 0.155 0.695 1

In short, MBB shows the best performance in terms of power but an overrejecting
behavior in terms of size.

5. Case Study: Did the Dotcom Bubble Change the Global Market Behavior?

This section is devoted to analyzing the effect that the dotcom bubble crash produced
over the global economy. Specifically, the described bootstrap procedures are used to
determine whether this landmark event had a permanent effect on the behavior of financial
markets worldwide.

5.1. The Dotcom Bubble Crash

Historically, the dotcom bubble was a rapid rise in U.S. technology stock equity
valuations exacerbated by investments in Internet-based companies during the bull market
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in the late 1990s. The value of equity markets grew substantially during this period, with
the Nasdaq index rising from under 1000 to more than 5000 between the years 1995 and
2000. Things started to change in 2000, and the bubble burst between 2001 and 2002 with
equities entering a bear market [20]. The crash that followed saw the Nasdaq index tumble
from a peak of 5048.62 on 10 March 2000, to 1139.90 on 4 October 2002, a 76.81% fall [21].
By the end of 2001, most dotcom stocks went bust.

Concerning the time period of the dotcom bubble, the majority of authors consider the
dotcom bubble to take place in the period 1996–2000 [22]. In addition, it is assumed that
the bubble-burst period was between 2000 and 2002, since, as stated before, the Nasdaq
index fell by 76.81% in 4 October 2002.

5.2. The Considered Data

To analyze the effects of the dotcom bubble in the global economy, we considered
three well-known stock market indexes, which are briefly described below.

• S&P 500. This index comprises 505 common stocks issued by 500 large-cap companies
and traded on stock exchanges in the United States. The S&P 500 gives weights to the
companies according to their market capitalization.

• FTSE 100. This market index includes the 100 companies listed in the London Stock
Exchange with the highest market capitalization. It is also a weighted index with
weights depending on the market capitalization of the different firms.

• Nikkei 225. This index is a price-weighted, stock market index for the Tokyo Stock
Exchange. It measures the performance of 225 large, publicly owned companies in
Japan from a wide array of industry sectors.

We focus on the trivariate time series formed by the daily stock prices of the three
previous indexes. The data were sourced from the finance section of the Yahoo website
(https://es.finance.yahoo.com, accessed on 20 July 2021). As our goal is to determine
whether the dotcom bubble distorted the global market behavior, we split this MTS into
two separate periods: before and after the bubble-burst period. To this end, we consider
the periods from 1987 to 2002 and from 2003 to 2018. In addition, we only select dates
corresponding to trading days for the three indexes and forming two periods of the same
length. Based on these considerations, the first period covers the simultaneous trading
days from 2 January 1987 to 25 July 2002, and the second period includes the simultaneous
trading days from 26 July 2002 to 28 December 2018. In this way, each MTS is constituted
by 3928 daily observations.

Since the series of closing prices are not stationary in mean, we proceed to take the
first difference of the natural logarithm of the original values, thus obtaining series of
so-called daily returns, which are depicted in Figure 1. The new series exhibit common
characteristics of financial time series, so-called “stylized facts”, as heavy tails, volatility
clustering, and leverage effects.

Two MTS were constructed by considering simultaneously the three UTS in Figure 1
before and after the dotcom bubble crash (vertical line). Then, the equality of the generating
processes of both MTS was checked using the bootstrap tests proposed throughout the
manuscript based on B = 500 bootstrap replicates.

5.3. Results

The p-values obtained by means of the methods MBB and SB were all 0. Therefore, both
bootstrap techniques indicate rejection of the null hypothesis at any reasonable significance
level. This suggests that the whole MTS exhibits a different dependence structure in each
of the considered periods. A direct implication of this fact could be that the dotcom
bubble crash in the early 2000s provoked a permanent change in the behavior of the
global economy.

https://es.finance.yahoo.com
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Figure 1. Daily returns of the S&P 500 (top panel), FTSE 100 (middle panel), and Nikkei 225 (bottom
panel) stock market indexes from 2 January 1987 to 28 December 2018. The vertical line indicates the
end of the dotcom bubble burst.

6. Conclusions

In this work, we addressed the problem of testing the equality of the stochastic
processes generating two multivariate time series. For that purpose, we first defined
a distance measure between multivariate processes based on comparing the quantile
cross-spectral densities, called dQCD. Then, two tests considering a proper estimate of this
dissimilarity (d̂QCD) were proposed. Both approaches are based on bootstrap techniques.
Their behavior under the null and the alternative hypotheses was analyzed through a
simulation study. The techniques were also used to answer the question regarding whether
or not the dotcom bubble crash of the 2000s affected global market behavior.
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