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Abstract: Professional sports achievements combine not only the individual physical abilities of ath-
letes but also many modern technologies in areas such as medicine, equipment production, nutrition,
and physical and mental health monitoring. In this work, we address the problem of predicting soccer
players’ ability to perform, from subjective self-reported wellness parameters collected using a com-
mercially deployed digital health monitoring system called PmSys. We use 2 years of data from two
Norwegian female soccer teams, where players have reported daily ratings for their readiness-to-play,
mood, stress, general muscle soreness, fatigue, sleep quality, and sleep duration. We explore various
time series models with the goal of predicting readiness, employing both a univariate approach and a
multivariate approach. We provide an experimental comparison of different time series models, such
as purely recurrent models, models of mixed recursive convolutional types, ensemble of deep CNN
models, and multivariate versions of the recurrent models, in terms of prediction performance, with
a focus on detecting peaks. We use different input and prediction windows to compare the accuracy
of next-day predictions and next-week predictions. We also investigate the potential of using models
built on data from the whole team for making predictions about individual players, as compared to
using models built on the data from the individual player only. We tackle the missing data problem
by various methods, including the replacement of all gaps with zeros, filling in repeated values, as
well as removing all gaps and concatenating arrays. Our case study on athlete monitoring shows
that a number of time series analysis models are able to predict readiness with high accuracy in near
real-time. Equipped with such insight, coaches and trainers can better plan individual and team
training sessions, and perhaps avoid over training and injuries.

Keywords: athlete training; data imputation; injury prevention; performance prediction; self-
reporting; soccer; time series analysis

1. Introduction

Team sports are gaining traction with association football (soccer) in the lead as the
most watched sport on television [1]. In 2018, 3.572 billion viewers tuned in to watch the
FIFA World Cup [2]. This is equivalent to half of the population on the globe [2]. Soccer is
played by amateurs and professionals globally and is a sport that brings people together
across the world.

For most professional sports achievements, athletes’ individual physical abilities are
combined with many modern technologies from fields such as medicine, equipment produc-
tion, nutrition, and physical and mental health monitoring. Proper diet, rest, and training
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regimens, as well as continuous monitoring and analysis of wellness and performance
metrics can make a big difference for both individual and team sports. Soccer players
constantly adhere to a strict nutrition plan, training process, and rest regime so that their
body is in the required state at particular moments. The athletes’ condition is influenced
not only by the amount of consumed and burned calories, or the duration and intensity of
the training process, but also by parameters such as the duration and quality of their sleep
and their general mental state including mood and stress level.

The increasing popularity and adoption of Machine Learning (ML) approaches has
led to more evidence-based decision making [3]. In this context, it is possible to compile
a set of parameters describing the general state of the athlete at a certain point of time,
collect objective or subjective measurements of these parameters, and try to predict the
state/behavior of the athlete’s body in the near future using ML. For instance, according to
Fuller et al. [4], an average soccer team can expect around 50 injuries per season. Using
ML, it might be feasible to make evidence-based decisions for reducing injuries at a chosen
period in the future using time series analysis and predictions. The desired outcome
of implementing such technologies into sports science is that injuries will be reduced,
performance will be improved, and better decisions will be made. Similar technologies
have already been approved by organizations such as FIFA and are used by several teams
in the Norwegian top league.

In this work, we address the problem of predicting soccer players’ ability to perform,
from subjective self-reported wellness parameters collected using a commercially deployed
digital health monitoring system called PmSys. We focus on readiness to play, which is a
measure of a player’s ability to complete a training session or play in a match. We address
the research question: Can we predict readiness for elite female soccer athletes using ML
on data collected using an athlete monitoring system? More specifically, we try to answer
the following. Which time series models are capable of capturing adequate information for
accurate predictions? Is it more accurate to predict a player’s readiness using data from an
individual player or team based data? How far back in the historical data should we go and
how far into the future can we predict? Does the training dataset size have an impact on
the results? Which hyperparameter configurations result in the most accurate predictions?

We design and implement a software framework for undertaking time series predic-
tions which can be configured extensively [5], and run multiple iterations of experiments to
answer the above questions. Our results show that a number of time series analysis models
are able to predict readiness with high accuracy in near real-time. Equipped with such
insight, coaches and trainers can better plan individual and team training sessions, and
perhaps avoid over training and injuries.

The rest of this paper is organized as follows. In Section 2, we provide background
information and an overview of related work. In Section 3, we describe our dataset and
methodology. In Section 4, we present selected results from our analysis of the above
research questions, and discuss our findings. In Section 5, we conclude the paper.

2. Background and Related Work
2.1. Time Series Prediction

A time series is described as an ordered collection of data points where each data
point is an observation in time [6–8]. Time series are sample realizations of stochastic
processes [6]. Stochastic processes can be found in various fields, such as temperature
measurements or a stock market index. Time series have an inherent dependence in time.
Successive observations are dependent and thus not randomly sampled [6]. Time as an
additional dimension distinguishes time series data from the more generally known cross-
sectional data. The time series analysis describes a set of statistical models that aim to model
the underlying stochastic process. The objectives of time series analysis are forecasting
and control [6]. Forecasting is considered as a regression problem and is defined as the
prediction of values based on the time series model beyond the present. The main tasks
of time series analysis are: (i) understand under the influence of which parameters the



Eng. Proc. 2022, 18, 37 3 of 12

value of the time series is formed, (ii) build a mathematical model for each parameter
or combination. Any time series can be decomposed into a trend, seasonal, cyclical, and
random components. The first three components form the non-random component of the
time series. The random component is present in any time series, but components of a
non-random constituent in the time series structure are not necessary [9].

The development of Recurrent Neural Networks (RNNs) made a significant contribu-
tion to the study and help solve regression problems associated with time series. RNNs are
applicable in tasks where something holistic is broken into parts. One of the most popu-
lar types of recurrent neural networks is the Long Short-Term Memory (LSTM) network.
Some of the most outstanding achievements of using LSTM are the revolutionizing of
speech recognition, outperforming traditional models in specific speech applications [10],
improving large-vocabulary speech recognition [11,12], and breaking records for improved
machine translation [13]. The LSTM extends the traditional time series analysis mod-
els such as autoregressive integrated moving average models or exponential smoothing
methods. Saimi et al. [14] demonstrated the superiority of the LSTM over the traditional
approaches. In addition, in 2014, a gate mechanism was introduced, called Gated Recurrent
Units (GRU), for recurrent neural networks. One found that its effectiveness in solving
problems of modeling music and speech signals is comparable to the use of long short-term
memory [15]. Compared to LSTM, this mechanism has fewer parameters because there are
no output gates [16].

2.2. The PmSys Athlete Monitoring System

PmSys is a digital monitoring system that was developed for the collection, storage,
analysis, and visualization of athletes’ health data [17,18]. The intention for creating this
system was to replace the manual method of collecting information, and its storage on
paper, with a digital one. According to the creators, the primary users are soccer players,
coaches, and medical personnel [19]. The primary tool for information registration is a
questionnaire that the players could easily and quickly fill out each day using a mobile
application [20]. This approach allows athletes to manage their own time when filling out
the questionnaire without the coach’s insistent control of the process.

Several experiments have been carried out to see if ML can be used to forecast future
values of soccer player readiness to play in previous work. Wiik et al. [18] conducted a
study with the purpose of reducing sports injuries and predicting readiness to play. Based
on a dataset from two male high division soccer teams in Norway (one team from January
2017 until late August 2017 including 19 players, the other team from February 2018 to mid
June 2018 including 22 players, with an overall dataset of 6000 entries), they demonstrated
the value of utilizing a LSTM RNN to predict reported training load. They were able to
train the model to predict positive peaks and negative peaks. Positive peaks are categorized
as values above 8 and negative peaks are categorized as values below 3. Both of the datasets
did not have values for all days. As a result, they had to account for the issue of missing
data. The missing data were not replaced or deleted to provide a realistic use scenario.
This was performed to provide a more realistic use case, as data gaps would always exist
due to vacations, injury time, and other factors. To keep the simplicity of reproducing and
interpreting the results, the model was kept small. This allowed to explore the underlying
possibilities in the data. To assess and confirm the data, two distinct methodologies were
used. The initial strategy was to train the entire team and then predict when the player
would be ready to play. The second strategy involves training the model on the player who
will be predicted. When the entire team was used to train the model, the predictions were
more accurate, and the graphs closely tracked the peaks. Wiik et al. [18] attempted another
experiment with traditional ML methods such as linear regression and random forest, but
the results were not significantly improved.

Another research performed by Johansen et al. [21] demonstrated the impact of em-
ploying current technologies in sports to detect injuries and train optimally. In this study
they have seen the advantages of incorporating technology into elite athlete performance.
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Their decade of expertise has culminated in a smartphone-based application with a backend
system for cutting-edge athlete monitoring. A cooperation between computer scientists,
sport scientists, and medical professionals has helped to discover gaps that technology can
address, allowing athletes to progress in the proper direction. PmSys was well received by
both athletes and staff, making it simpler to advocate for earlier bedtimes and modified
training days.

3. Dataset and Methodology
3.1. Dataset

Over the course of 2 years, players from 2 participant elite female soccer teams in the
PmSys system have contributed to the collection of subjective reports through a mobile
application, where they used questionnaires for registering their individual subjective
responses to a list of metrics daily. In this work, we use a subset of these metrics as
listed below.

• Readiness to play (rated 1–10).
• Mood (rated 1–5).
• Stress level (rated 1–5).
• General muscle soreness (rated 1–5).
• Fatigue (rated 1–5).
• Sleep quality (rated 1–5).

3.2. Proposed Investigations

Time series models: We propose to benchmark different time series models, such as
purely recurrent models (RNN, LSTM, GRU, RNNPlus, LSTMPLus, GRU-Plus), models
of mixed recursive convolutional types (RNN-FCNPlus, LSTM-FCNPlus, GRU-FCNPlus),
ensemble of deep CNN models (InceptionTime), and multivariate versions of the recurrent
models (MRNN-FCNPlus, MLSTM-FCNPlus, MGRU-FCNPlus).

Univariate vs. multivariate prediction: A univariate time series has a single time-
dependent variable. Using only the readiness parameter from our dataset to predict
readiness is an example of a univariate time series. A multivariate time series, on the
other hand, has more than one time-dependent variable. We propose to use mood, stress,
soreness, and fatigue, along with readiness, as a multivariate time series, to compare
univariate vs. multivariate prediction performance of the readiness parameter.

Window size: We propose to compare the performance of running trained models on
test data with different sliding window sizes, both in terms of input window (indicating
the amount of data to be used for making predictions) and output window (indicating the
amount of data to be predicted).

Training on team vs. training on player: Motivated by the findings of Wiik et al. [18],
we propose to compare the accuracy of predicting the readiness parameter for a single
player, using a model trained on data from the same player only versus using a model
trained on data from the player’s entire team.

Hyperparameter configuration: We propose to investigate the influence of hyperpa-
rameters on prediction accuracy, in particular batch size, number of epochs in training, and
data shuffling.

Data imputation: As our dataset is composed of subjectively reported metrics, a com-
mon problem is missing data (i.e., responses not being recorded every day). Missing data
causes time series to have gaps. Several solutions can address this challenge: (i) replacing all
gaps with 0, (ii) filling in the gaps with the value from the previous day, and (iii) removing
all gaps and concatenating the data array.

3.3. Implementation

Python is a suitable language for working with large data sets since it is easy to
use and has many already implemented libraries related to machine learning. We use
pandas to extract data from file and preprocessing. Pandas’ data functionality is built
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on the NumPy library, a lower-level tool. Includes special techniques for working with
numeric tables and time series. Tsai is a state-of-the-art deep learning library for time series
and sequences (https://timeseriesai.github.io/tsai/ (accessed on 1 June 2022)). It is an
open-source deep learning package built on top of Pytorch and fastai [22], focusing on
state-of-the-art techniques for time series tasks such as classification, regression, forecasting,
and imputation. This library contains a number of ready-to-use deep learning models that
are possible to run directly in Python for time series prediction, which we use. To test
the performance of various models, we also use the process and system utilities library
(psutil). Table 1 presents the specifications of the hardware and software components of
the benchmark implementation of our proposed framework.

Table 1. System specifications for the benchmark implementation.

Category Name Version Description

Software

Ubuntu 18.04.6 LTS OS
Python 3.6.9 Programming language

Tsai 0.2.22 ML library
Fastai 2.5.2 ML library
Torch 1.9.0 + cu102 ML library

Pandas 1.1.5 Data analysis library
Psutil 5.8.0 Performance measurement library

Hardware
Memory DDR4 46.9 GiB
Harddisk SSD 491.2 GiB

CPU Intel Core i7-9700 (8 cores)

3.4. Metrics

Prediction performance: The metrics used to evaluate prediction models operate on a
set of continuous values (with an infinite number of items) and therefore differ slightly from
the metrics used for classification tasks. The most popular metrics for regression models
are Mean Squared Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error
(MAE). In the following, we primarily use MSE. MSE measures the average sum of the
square of the difference between the actual value and the predicted value for all data points.
Exponentiation is performed, so negative values are not compensated with positive ones.
Compared to the MAE, MSE has several advantages: it emphasizes big mistakes over more
minor mistakes. It is differentiable, which allows it to be more efficiently used to find
the minimum or maximum values using mathematical methods. The lower the MSE, the
higher the prediction accuracy.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2

System performance: The primary metrics for measuring performance are usually
time spent on training and testing models, processor, memory, disk, and Graphics Process-
ing Unit (GPU) usage. We primarily focus on computation without the requirement for
a GPU, therefore we measure all other parameters except the GPU usage: (i) Time usage:
Time is measured in seconds. For measuring the time to train and test each model, we use
the time module (https://docs.python.org/3/library/time.html (accessed on 1 June 2022))
from the Python standard library, which provides various time-related functions. (ii) CPU,
memory and disk usage: To measure CPU, memory, and disk usage, we use a cross-platform
library called psutil (https://pypi.org/project/psutil/ (accessed on 1 June 2022)). This
library has a set of utilities for obtaining information about system performance (since
our processor consists of 8 cores, we use the utility cpu_percent() to obtain information
about a load of each core in percentage. We also use psutil to measure memory and disk
usage. The virtual_memory() utility function provides information about various memory
parameters. We are interested in the parameter used, which shows the amount of memory

https://timeseriesai.github.io/tsai/
https://docs.python.org/3/library/time.html
https://pypi.org/project/psutil/
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used at a given time. The disk_usage() function also has the parameter used that provides
information about the used disk space at a given time). We measure the used memory and
disk in GiB. We measure CPU, memory, and disk usage with an interval of one second.

4. Selected Results
4.1. Benchmarking Different Time Series Models

We ran the 13 different models listed in Section 3 on data from one team, predicting
the readiness parameter for a single player using the model trained on the player’s own
data. Initial values for the hyperparameters batch size and number of epochs were chosen
based on examples in the Tsai code repository (https://github.com/timeseriesAI/tsai/
tree/main/tutorial_nbs (accessed on 1 June 2022)). For the sliding window size, multiple
values (3, 5, 7, 14, 21, 28, 35, 42, 49) were considered. Missing data were treated with
and without gaps. Table 2 presents the best performing models and their corresponding
MSE for univariate prediction. The best results were obtained using a sliding window
of size 3 and data without gaps. The initial value for the number of epochs (200) was
suitable for almost all models, except for the GRU, where overfitting was observed in the
training, and the value reduced to 100. Almost all models could predict the ground truth
contour of readiness over time quite well with a slight deviation, except for GRUPlus. Some
models also were able to predict positive and negative peaks successfully, especially the
InceptionTime, MGRU-FCNPlus, MLSTM-FCNPlus, RNN-FCNPlus, MRNN-FCNPlus,
GRU-FCNPlus, and LSTM-FCNPlus.

Table 2. MSE values for top models. Univariate prediction for single player, input window size: 3, no
zero-padding.

Model MSE

InceptionTime 1.191
MGRU-FCNPlus 1.280
MLSTM-FCNPlus 1.299

RNN-FCNPlus 1.321
LSTM 1.331

MRNN-FCNPlus 1.350
GRU-FCNPlus 1.369

GRU 1.375
LSTM-FCNPlus 1.409

LSTMPlus 1.480
GRUPlus 1.763

4.2. Univariate vs. Multivariate Prediction

We ran the same configurations to carry out the initial experiments for multivariate
scenario, with the difference that multivariate times series consisting of readiness, mood,
stress, soreness, and fatigue, where the target parameter to predict is readiness, are used.
After initial observations of multivariate prediction, 200 epochs turned out to be too high
and influenced the results of predictions. As the plots of the training and validation loss
function for various models showed, many of them were already trained after 20 epochs;
therefore, we decided to correct the number of epochs for all models and rerun the initial
experiments with sliding window sizes of 3, 5, 7, 28, and 49.

Table 3 presents the best performing models and their corresponding MSE for multi-
variate prediction with a higher number of epochs (top), and a lower number of epochs
(bottom). With a large number of epochs, only three neural networks had an MSE below 2.
Where MSE for the top ten models for univariate prediction was within the range 1191–1480,
the MSE for only the four best models with multivariate prediction was within 1325–1603,
which meant that employing univariate prediction was more accurate. The best results
for both multivariate and univariate prediction were obtained for a sliding window of
size 3 and data without gaps. Overfitting influenced multivariate prediction to a greater

https://github.com/timeseriesAI/tsai/tree/main/tutorial_nbs
https://github.com/timeseriesAI/tsai/tree/main/tutorial_nbs
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extent. Similar to univariate prediction, InceptionTime was among the best models, with
LSTMPlus and InceptionTime predictions closest to ground truth overall, and the plots of
predicted against actual values of readiness for most models adequate for following peaks.

Table 3. MSE for top models. Multivariate prediction for single player, input window size: 3, no
zero-padding. Number of epochs: 200 (top), 20 (bottom).

Model MSE

LSTMPlus 1.668
InceptionTime 1.721

LSTM 1.735

LSTM-FCNPlus 1.325
InceptionTime 1.567
GRU-FCNPlus 1.600

MLSTM-FCNPlus 1.603

4.3. Input and Output Window Size

To investigate how the input window and output window sizes influence prediction
in a more practical context, we focused on a daily and weekly predictions as might be
relevant to soccer clubs during a game season. We ran experiments using a period of 2 years
to train on the entire team and predict the readiness for one player for (7, 14, 21) days
as the input window, and 1 and 7 days as the output window. Table 4 presents the MSE
values for univariate prediction with LSTMPlus as a representative model, with different
window sizes, for Team A. We note that similar results are obtained for Team B, and the
MSE value increases for each day predicted in the future (see Figure 1), which was against
our initial expectation of a somewhat weekly pattern (and therefore reduced MSE for
7 days). The increase in inaccuracy is possibly due to readiness being a continuous rather
than periodically peaking parameter, meaning that the days immediately leading up to a
day are important. If the peaks were more periodic, the predictions for future days which
are ahead by multiple days (e.g., same day of the week in the upcoming week) would be
possible to predict without relying on the whole of the leading week.

Figure 1. MSE per predicted day. Training on the entire team and testing on single player from Team
B, number of epochs: 30, batch size: 5, input window: 21, output window: 7.
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Table 4. MSE for LSTMPlus with different input and output window sizes (Team A).

Year Epoch Batch Size Input Window Output Window Train on Shuffle MSE

2020 30 5 7 1 Team False 1.54

2020 30 5 14 1 Team False 1.37

2020 30 5 21 1 Team False 1.31

2021 30 5 7 7 Team False 1.54–1.57

2021 30 5 14 7 Team False 1.51–1.64

2021 30 5 21 7 Team False 1.87–2.61

4.4. Training on Team vs. Training on Player

Previous related work has proven that training on the entire team and predicting
readiness for a single player can give promising results [18,21,23]. In Table 5, we present
the results from experiments on Team A with 30 epochs and a batch size of 5, comparing
the performance of models trained on the entire team and trained on a single player for
predicting the readiness for the player. Overall, training on the entire team and predicting
for one player show lower MSE values.

Table 5. MSE for LSTMPlus trained on single player vs. trained on entire team (Team A).

Epoch Batch Size Input Window Output Window Train on Shuffle MSE

30 5 7 1 Team False 1.54

30 5 7 1 Player False 1.64

30 5 14 1 Team False 1.37

30 5 14 1 Player False 1.49

30 5 21 1 Team False 1.31

30 5 21 1 Player False 1.25

Figure 2 demonstrates the viability of training on the entire team, where the predictions
follow the actual values quite accurately and the peaks are anticipated correctly. We also
observe that the MSE value increases as the input window increases, possibly indicating
that predicting the next day using data from the last week (input window: 7, output
window: 1) might be the optimal use case for our scenario.

(a)

Figure 2. Cont.
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(b)

Figure 2. Actual and predicted values for readiness for player from Team A. Training on entire team,
number of epochs: 30, batch size: 5. (a) input window: 7; (b) input window 21.

4.5. Hyperparameter Configuration

Model optimization depends on hyperparameters, which include number of epochs,
batch size and data shuffle. We pick a single player from a team, modify the hyperpa-
rameters and train the model on the entire team to predict on the player using univariate
prediction with LSTMPLus. Table 6 presents the MSE values for different hyperparameter
settings. The result showed that enabling shuffle led to a reduced MSE. The plots of actual
and predicted values, however, were almost identical for different values for other hyper-
parameters. For all cases, the predicted peaks were quite close to the actual values. The
only hyperparameter modification that reduced the MSE value was enabling data shuffle,
and its influence was not significant.

Table 6. MSE for LSTMPlus with different hyperparameter values.

Epoch Batch Size Input Window Output Window Train on Shuffle MSE

30 5 7 1 Team True 0.68

30 5 7 1 Team False 0.72

40 5 7 1 Team True 0.72

40 5 7 1 Team False 0.73

30 25 7 1 Team True 0.68

30 25 7 1 Team False 0.69

50 5 7 1 Team True 0.86

50 5 7 1 Team False 0.76

50 25 7 1 Team True 0.70

50 25 7 1 Team False 0.73

4.6. System Performance

Table 7 reports system performance metrics as recorded on the benchmark implemen-
tation specified in Table 1 for selected models for univariate and multivariate prediction.
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Table 7. System performance metrics for benchmark implementation: univariate (top) and multivari-
ate (bottom) prediction.

Model Training Time (s) Testing Time for
10 Repetitions (s) CPU (Min/Max) Memory

(Min/Max) Disk (Min/Max)

MRNN-FCNPlus 381 0.370 45/100 18.450/18.540 34.040/34.048

InceptionTime 554 0.539 60/100 18.130/18.200 34.060/34.068

LSTM-FCNPlus 341 0.324 50/100 18.330/18.400 34.044/34.054

MGRU-FCNPlus 387 0.306 45/100 18.500/18.570 34.046/34.056

LSTMPlus 216 0.261 60/100 18.210/18.270 34.044/34.051

InceptionTime 46 0.295 80/100 17.875/17.895 34.048/34.050

GRU-FCNPlus 111 0.204 85/100 17.772/17.787 34.053/34.055

LSTM-FCNPlus 147 0.240 75/100 17.762/17.784 34.050/34.051

InceptionTime and LSTM have the best training time (200 epochs) for multivariate
and univariate prediction, respectively. The testing time for all models (7100 data points)
turned out to be approximately the same, and we see that testing proceeded very quickly.
To calculate the CPU usage, we used a utility that measured the utilization for each core
separately. The CPU utilization was measured only in the process of training the models.
As a result, it turned out that the usage increased several times at the start of the training
process and remained at the level of 75–100% (multivariate) and 65–100% (univariate) for
all models. After the end of the training, the CPU utilization also immediately decreased.
The values of memory and disk usage in the training process turned out to be insignificant.
The minimum and maximum amount of memory and disk usage differed by about a few
hundred MB. Overall, our preliminary analysis indicates that a framework as we have
proposed in this work can be run in near real time without requiring a lot of resources.

5. Conclusions

In this work, we addressed the problem of predicting soccer players’ ability to perform,
from subjective self-reported wellness parameters collected using a commercially deployed
digital health monitoring system called PmSys. We focused on readiness to play, which
is a measure of a player’s ability to complete a training session or play in a match, and
experimented with a software framework for undertaking time series predictions to derive
insights regarding the influence of different factors on prediction accuracy.

As an initial study, we investigated and presented our results regarding the following:
(1) We tested various time series models to see which were capable of capturing adequate
information for accurate predictions. (2) We compared univariate and multivariate ap-
proaches to see if we can leverage different wellness parameters in the dataset to predict
readiness? (3) We looked at the impact of different input and output sizes to see how far
back in the historical data it is necessary to go for training, and how far into the future it
is possible to predict with acceptable accuracy. (4) We looked at how training on a single
player versus training on the entire team affected the results, to see if prediction frame-
works can leverage data from teams for making predictions on individual players. (5) We
investigated the influence of different hyperparameters such as the number of epochs,
batch size, and data shuffle on prediction accuracy.

We found out that most of the tested ML models are able to yield a reasonable ac-
curacy in prediction, provided that training parameters are adjusted to avoid overfitting.
In terms of performance, the best model for the multivariate prediction turned out to be
InceptionTime, and for the univariate prediction, LSTM. We could not find evidence that
multivariate predictions perform better within the context of our dataset and scenario,
however, further analysis of the other parameters available from the PmSys dataset are nec-
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essary. We saw that daily predictions performed better than weekly predictions, indicating
that the readiness parameter might not be as strongly periodic as initially assumed.

Training on the entire team and predicting for a single player resulted in more accurate
overall results, especially when a team has high consistency across players, and the correct
prediction of peaks. This is a first step toward determining the system’s generalizability
so that it may be used in other sports. Hyperparameter tuning did not have significant
influence within our testing range, except for data shuffling, which improved performance.

In this work, we have tried to address various research aspects independently, and
using different parts of the PmSys dataset at times; however, there are many investigations
that need to be continued in a more systematic manner over the complete and extended
dataset for a more comprehensive understanding of the potentially complex interplay be-
tween influencing factors on prediction performance. Dataset and pipeline standardization,
including the evaluation of libraries other than Tsai, are also necessary for a large-scale
analysis covering a wide range of parameter values and system settings. Other future work
topics include the investigation of the contextual relevance of the samples (e.g., what effects
does it have on the predictions when using off-season vs. on-season, weekday vs. weekend,
match day vs. regular training), more advanced methods for handling missing data, and
a deeper analysis of multivariate prediction with an augmented set of supplementary
wellness and health parameters.

Overall, we demonstrated that it is possible to make relatively accurate predictions
about elite soccer player readiness using ML algorithms such as LSTM, using the kind of
datasets collected by athlete monitoring platforms such as PmSys. ML-based time series
prediction pipelines, integrated with such platforms, can have a huge impact in the field of
sports science and computer science, and our approach can be extended to various health,
wellness, injury, and training parameters, as well as different sports as well.
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