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Abstract: This paper focusses on the impact of the COVID-19 on the Stock Exchange of Mauritius
(SEM) by modelling the number of daily stock transactions of two banks. Hence, a non-stationary
bivariate integer-valued autoregressive and moving average of order 1 (BINARMA (1,1)) process with
COM-Poisson (CMP) innovations (BINARMA (1,1) CMP) is introduced. The conditional maximum
likelihood (CML) approach is used to estimate the model parameters. The novel model is applied on
the intra-day trading of two banking stocks.
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1. Introduction

The Stock Exchange of Mauritius Ltd. (SEM, Port-Louis, Mauritius) started trading
on 30 March 1989 as a private limited company with the responsibility of promoting a
proficient and well-regulated stock market in Mauritius. The SEM changed its status on 6
October 2008 to operate as a public company and has all these years left any stone unturned
to be the leading stock exchange market in the African continent. To date, the SEM has
positioned itself as an essential capital raising platform for nearly 61 companies operating
in the financial, construction, leisure, agricultural and other sectors of the economy. In
its internationalization process, the SEM has set-up a multi-currency listing, trading and
financial platform and has modernized its listing framework with different multi-asset class
financial products. In 2010, the SEM embarked in a new journey by changing its strategic
direction and started an internationalization of its operational and regulatory framework.
To date, the market capitalization and the annual turnover of the SEM are approximately
USD 7.5 billion and USD 302 billion, respectively.

The start of the financial year 2020–2021 was affected by the direct impact of the
COVID-19 followed by the first nationwide sanitary confinement from March 2020 to May
2020. With the upliftment of the confinement, the Mauritian economy gradually started its
recovery pathway. However, a second nationwide confinement was announced in March
2021 due to the resurgence of the COVID-19 cases with a partial de-confinement plan as
from May 2021 up till now. Undeniably, the impact of the COVID-19 was severe such
that the SEM has been navigating mostly in the red zone during this pandemic period. In
the year 2021, the market started recovering following the announcements of the vaccines
against the COVID-19, but the recovery was again affected by the second confinement.
Hence, modelling the number of intra-day transactions on the stock market is of upmost
importance. Several researchers have also elaborated on the potential covariates that
affect these daily stock transactions: the impact of news entering the market, the time
of day effect and the day effect [1,2]. Time of the day effect and the impact of news on
the market have proved to influence the intensity of daily trading on the stock market [3].
However up till now, there has not been any studies that have incorporated the cross-
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correlation between two competing companies affected by the above covariates as well as
the COVID-19 news effect.

Quoreshi [4,5] is the first author who tried to model the number of intra-day transac-
tions in the literature by developing a BINMA(p) process and applying the latter on the
number of intra-day transactions of AstraZeneca and Ericsson B based on the Generalized
Poisson distribution of the innovation series due to the over-dispersed nature of the data.
Several authors have recently introduced bivariate processes under the non-stationary
negative binomial (NB) and CMP innovations in the literature under either autoregres-
sive or moving average structures (see Jowaheer et al. [6], Mamodekhan et al. [7] and
Sunecher et al. [8,9]). As for the estimation of parameters, Quoreshi [4,5] estimated the re-
gression effects using the feasible generalized least squares (FGLS) technique and concluded
that the estimates of the model parameters are efficient, but the efficiency of these estimates
have been questioned (see Sunecher et al. [8]). Another estimation method which has been
frequently used in the literature is the generalized quasi-likelihood (GQL) method which
has proved to yield more reliable estimates than FGLS. However, the likelihood-based
approach provides the best estimates [10].

Based on the above findings, this paper proposes a novel bivariate integer-valued au-
toregressive and moving average of order 1 (BINARMA (1,1)) process under non-stationary
COM-Poisson (CMP) innovation series where the model parameters are estimated using
the conditional maximum likelihood (CML) approach. This novel model is then applied to
the intra-day series of two banks listed on the SEM.

Hence, the paper is laid out as follows: In Section 2, the BINARMA (1,1) process with
CMP innovations is developed. In Section 3, the CML approach is derived and Section 4
presents the forecasting equations. In Section 5, the BINARMA (1,1) model is applied on
the number of intra-day transactions of two banks listed in SEM and is compared with two
other competing models. The conclusion is presented in the last section.

2. The Non-Stationary BINARMA (1,1) Process with COM-Poisson Innovations
(BINARMA (1,1) CMP)

Consider
Y[1]

t = γ11 ∗Y[1]
t−1 + γ12 ∗ R[2]

t−1 + R[1]
t (1)

Y[2]
t = γ21 ∗Y[2]

t−1 + γ22 ∗ R[2]
t−1 + R[2]

t (2)

where γkj ∈ (0, 1) and γkj∗ are mutually independent binomial thinning operators such

that γkj ∗Y[k]
t−1 = ∑

Y[k]
t−1

i=0 Zi where Zi ∼ Bernoulli(γkj).

‘◦’ indicates the binomial thinning operator [11,12] such that {γkk ◦ Y[k]
t−1|Y

[k]
t−1} ∼

Binomial(Y[k]
t−1, γkk) where:

1. E(γ ◦Y) = γE(Y);
2. Var(γ ◦Y) = γ(1− γ)E(Y) + γ2Var(Y);
3. Cov(γ1 ◦Y[1], γ2 ◦Y[2]) = γ1γ2Cov(Y[1], Y[2]).

As for the innovation terms, Corr(R[1]
t , R[2]

t ) = α12 where (R[1]
t , R[2]

t ) follows a bivari-

ate COM-Poisson distribution with R[k]
t ∼ COM − Poisson(λ[k]

t , ν̃k). Note that λ
[k]
t =

(θ
[k]
t )1/ν̃k − ( ν̃k−1

2ν̃k
), where θ

[k]
t = exp(x

′
tβ

[k]) with xt = [xt1, xt2, . . . , xtj, . . . , xtp]
′

and β[k] =

[β
[k]
1 , β

[k]
2 , . . . , β

[k]
j , . . . , β

[k]
p ]
′

for k ∈ {1, 2}.
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Based on the above conditions, the moments are derived as follows:

E(Y[1]
t ) = E(γ11 ◦Y[1]

t−1 + γ12 ◦ R[1]
t−1 + R[1]

t )

= E(γ11 ◦Y[1]
t−1) + E(γ12 ◦ R[1]

t−1) + E(R[1]
t )

= γ11E(Y[1]
t−1) + γ12E(R[1]

t−1) + E(R[1]
t )

µ
[1]
t = E(Y[1]

t ) = γ11µt−1 + γ12λ
[1]
t−1 + λ

[1]
t , (3)

E(Y[2]
t ) = E(γ21 ◦Y[2]

t−1 + γ22 ◦ R[2]
t−1 + R[2]

t )

= E(γ21 ◦Y[2]
t−1) + E(γ22 ◦ R[2]

t−1) + E(R[2]
t )

= γ21E(Y[2]
t−1) + γ22E(R[2]

t−1) + E(R[2]
t )

µ
[2]
t = E(Y[2]

t ) = γ21µt−1 + γ22λ
[1]
t−1 + λ

[1]
t , (4)

Var(Y[1]
t ) = Var(γ11 ◦Y[1]

t−1 + γ12 ◦ R[1]
t−1 + R[1]

t )

= Var(γ11 ∗Y[1]
t−1) + Var(γ12 ∗ R[1]

t−1) + Var(R[1]
t ) + 2Cov(γ11 ∗Y[1]

t−1, γ12 ∗ R[1]
t−1)

= γ11(1− γ11)E(Y[1]
t−1) + γ2

11Var(Y[1]
t−1) + γ12(1− γ12)E(R[1]

t−1)

+ γ2
12Var(R[1]

t−1) + Var(R[1]
t ) + 2Cov(γ11 ∗Y[1]

t−1, γ12 ∗ R[1]
t−1)

= γ11(1− γ11)µ
[1]
t−1 + γ2

11Var(Y[1]
t−1) + γ12(1− γ12)λ

[1]
t−1

+ γ2
12

λ
[1]
t−1
ν̃k

+
ν̃k − 1

2ν̃2
k

+

λ
[1]
t−1
ν̃k

+
ν̃k − 1

2ν̃2
k

+ 2γ11γ12Cov(Y[1]
t−1, R[1]

t−1)

= γ11(1− γ11)µ
[1]
t−1 + γ2

11Var(Y[1]
t−1) + γ12(1− γ12)λ

[1]
t−1

+ (1 + γ2
12 + 2γ11γ12)

λ
[1]
t−1
ν̃1

+
ν̃1 − 1

2ν̃2
1

, (5)

where

Cov(Y[1]
t−1, R[1]

t−1) = Cov(γ11 ◦Y[1]
t−2 + γ12 ◦ R[1]

t−2 + R[1]
t−1, R[1]

t−1)

= Cov(R[1]
t−1, R[1]

t−1)

= Var(R[1]
t−1)

=
λ
[1]
t−1
ν̃1

+
ν̃1 − 1

2ν̃2
1

. (6)

Similarly,

Var(Y[2]
t ) = Var(γ21 ∗Y[2]

t−1) + Var(γ22 ∗ R[2]
t−1) + Var(R[2]

t ) + 2Cov(γ21 ∗Y[2]
t−1, γ22 ∗ R[2]

t−1)

= γ21(1− γ21)µ
[2]
t−1 + γ2

21Var(Y[2]
t−1) + γ22(1− γ22)λ

[2]
t−1

+ (1 + γ2
22 + 2γ21γ22)

λ
[2]
t−1
ν̃2

+
ν̃2 − 1

2ν̃2
2

. (7)
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As for the covariance for the same series,

Cov(Y[1]
t , Y[1]

t+h) = Cov[Y[1]
t , (γ11 ◦Y[1]

t+h−1 + γ12 ◦ R[1]
t+h−1 + R[1]

t+h)]

= γ11Cov[Y[1]
t , Y[1]

t+h−1]

= γ11Cov[Y[1]
t , (γ11 ◦Y[1]

t+h−2 + γ12 ◦ R[1]
t+h−2 + R[1]

t+h−1)]

= γ2
11Cov[Y[1]

t , Y[1]
t+h−2]

...

= γh−1
11 Cov[Y[1]

t , (γ11 ◦Y[1]
t + γ12 ◦ R[1]

t + R[1]
t+1)]

= γh
11Var(Y[1]

t ) + γh−1
11 γ12Var(R[1]

t )

= γh
11Var(Y[1]

t ) + γh−1
11 γ12

λ
[1]
t−1
ν̃1

+
ν̃1 − 1

2ν̃2
1

 (8)

and

Cov(Y[2]
t , Y[2]

t+h) = γh
21Var(Y[2]

t ) + γh−1
21 γ22

λ
[2]
t−1
ν̃2

+
ν̃2 − 1

2ν̃2
2

. (9)

The cross-covariance are derived as follows:

Cov(Y[1]
t , Y[2]

t ) = Cov(γ11 ◦Y[1]
t−1 + γ12 ◦ R[1]

t−1 + R[1]
t+, γ21 ◦Y[2]

t−1 + γ22 ◦ R[2]
t−1 + R[2]

t )

= γ11γ21Cov(Y[1]
t−1, Y[2]

t−1) + γ11γ22Cov(Y[1]
t−1, R[2]

t−1)

+ γ12γ21Cov(R[1]
t−1, Y[2]

t−1) + Cov(R[1]
t−1, R[2]

t−1) + Cov(R[1]
t , R[2]

t )

= γ11γ21Cov(Y[1]
t−1, Y[2]

t−1) + (γ11γ22 + γ12γ21 + γ12γ22)α

√
λ
[1]
t−1

√
λ
[2]
t−1

+ α

√
λ
[1]
t

√
λ
[2]
t , (10)

Cov(Y[1]
t , Y[2]

t+h) = Cov[Y[1]
t , (γ21 ◦Y[2]

t+h−1 + γ22 ◦ R[2]
t+h−1 + R[2]

t+h)]

= γ21Cov[Y[1]
t , Y[2]

t+h−1]

= γ21Cov[Y[1]
t , (γ21 ◦Y[2]

t+h−2 + γ22 ◦ R[2]
t+h−2 + R[2]

t+h−1)]

= γ2
21Cov[Y[1]

t , Y[2]
t+h−2]

...

= γh−1
21 Cov[Y[1]

t , (γ21 ◦Y[2]
t + γ22 ◦ R[2]

t + R[2]
t+1)]

= γh
21Cov(Y[1]

t , Y[2]
t ) + γh−1

21 γ22Cov(R[1]
t , R[2]

t )

= γh
21Cov(Y[1]

t , Y[2]
t ) + γh−1

21 γ22α

√
λ
[1]
t

√
λ
[2]
t (11)

and

Cov(Y[2]
t , Y[1]

t+h) = γh
11Cov(Y[1]

t , Y[2]
t ) + γh−1

11 γ12α

√
λ
[1]
t

√
λ
[2]
t . (12)

Remark 1. Under stationary moment conditions, replacing t = 1 in Equations (3)–(7) and
Equation (10), we have

µ
[1]
1 = E(Y[1]

t ) =
(γ12 + 1)λ[1]

1
1− γ11

(13)
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µ
[2]
1 = E(Y[2]

t ) =
(γ22 + 1)λ[2]

1
1− γ21

(14)

Var(Y[1]
1 ) =

(
1

1− γ2
11

)
{γ11(1− γ11)µ

[1]
1 + γ12(1− γ12)λ

[1]
1

+ (1 + γ2
12 + 2γ11γ12)

[
λ
[1]
1

ν̃1
+

ν̃1 − 1
2ν̃2

1

]
}, (15)

Var(Y[2]
1 ) =

(
1

1− γ2
21

)
{γ21(1− γ21)µ

[2]
t−1 + γ22(1− γ22)λ

[2]
t−1

+ (1 + γ2
22 + 2γ21γ22)

λ
[2]
t−1
ν̃2

+
ν̃2 − 1

2ν̃2
2

}, (16)

Cov(Y[1]
1 , Y[2]

1 ) =
(γ11γ22 + γ12γ21 + γ12γ22 + 1)α

√
λ
[1]
1

√
λ
[2]
1

1− γ11γ21
(17)

Remark 2. Using the initial values for t = 1 in Equations (12)–(16), we compute the val-
ues of µ

[1]
t , µ

[2]
t , Var(Y[1]

t ), Var(Y[2]
t ) and Cov(Y[1]

t , Y[2]
t ) in Equations (3)–(11) iteratively for

t = 2, . . . , T.

3. Conditional Maximum Likelihood Method

In this section, we derive the CML method for estimating the parameters of the
BINARMA (1,1) model based on thinning and convolution properties [13]. The conditional
density of the proposed BINARMA (1,1) model with COM-Poisson innovations is derived
as follows:

f1(k) =
k

∑
j1=0

(
y[1]t−1

j1

)(
r[1]t−1 = y[1]t−1 − k

k− j1

)

γ
j1
11(1− γ11)

y[1]t−1−j1 γ
k−j1
12 (1− γ12)

y[1]t−1−2k+j1 , (18)

f2(s) =
s

∑
j2=0

(
y[2]t−1

j2

)(
r[2]t−1 = y[2]t−1 − s

s− j2

)

γ
j2
21(1− γ21)

y[2]t−1−j2 γ
s−j2
22 (1− γ22)

y[2]t−1−2s+j2 , (19)

and a bivariate distribution of the innovation terms f3(r
[1]
t = y[1]t−1 − k, r[2]t = y[2]t−1 − s) =

P
(R[1]

t =r[1]t ,R[2]
t r[2]t )

, where

f3(r
[1]
t = y[1]t−1 − k, r[2]t = y[2]t−1 − s) =

 (λ
[1]
t )y[1]t−1−k

((y[1]t−1 − k)!)ν̃1

[ 1

Z(λ[1]
t , ν̃1)

] (λ
[2]
t )y[2]t−1−k

((y[2]t−1 − k)!)ν̃2

[ 1

Z(λ[2]
t , ν̃2)

]
(20)

where the normalizing constant Z(λ[k]
t , ν̃k) = ∑∞

j=0
λ
[k]
t

j

(j!)ν̃k
.

The conditional density is written as f ((y[1]t , y[2]t )|(y[1]t−1, y[2]t−1, r[1]t−1, r[2]t−1), θ) =∑
g1
k=0 ∑

g2
s=0

f1(k) f2(s) f3(r
[1]
t = y[1]t−1 − k, r[2]t = y[2]t−1 − s),
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where θ = [γ11, γ12, γ21γ22, ν̃1, ν̃2, β[k]] is the vector of unknown parameters, g1 = min(y[1]t , y[1]t−1)

and g2 = min(y[2]t , y[2]t−1).
The conditional likelihood function is given by

L(θ|y) =
T

∏
t=1

f ((y[1]t , y[2]t )|(y[1]t−1, y[2]t−1, r[1]t−1, r[2]t−1), θ) (21)

and after maximizing Equation (22)

log[L(θ|y)] = log

[
T

∑
t=1

f ((y[1]t , y[2]t )|(y[1]t−1, y[2]t−1, r[1]t−1, r[2]t−1), θ)

]
(22)

we obtain the maximum likelihood estimators of θ for some starting value of y0.

4. Forecasting Equations

Based on the proposed model, the forecasting equations are derived as follows:

E(Y[1]
t+1|y

[1]
t , r[1]t ) = E(γ11 ◦Y[1]

t |y
[1]
t ) + E(γ12 ◦ R[1]

t |r
[1]
t ) + E(R[1]

t+1)

= γ11y[1]t + γ12r[1]t + λ
[1]
t+1 (23)

E(Y[2]
t+1|y

[2]
t , r[2]t ) = E(γ21 ◦Y[2]

t |y
[2]
t ) + E(γ22 ◦ R[2]

t |r
[2]
t ) + E(R[2]

t+1)

= γ21y[1]t + γ22r[2]t + λ
[2]
t+1 (24)

and

Var(Y[1]
t+1|y

[1]
t , r[1]t ) = Var(γ11 ◦ y[1]t |y

[1]
t ) + Var(γ12 ◦ R[1]

t |r
[1]
t ) + Var(R[1]

t+1)

= γ11(1− γ11)y
[1]
t + γ12(1− γ12)r

[1]
t +

λ
[1]
t+1
ν̃1

+
ν̃1 − 1

2ν̃2
1

(25)

Var(Y[2]
t+1|y

[2],r[2]t
t ) = Var(γ21 ◦ y[2]t |y

[2]
t ) + Var(γ22 ◦ R[2]

t |r
[2]
t ) + Var(R[2]

t+1)

= γ21(1− γ21)y
[2]
t + γ22(1− γ22)r

[2]
t +

λ
[2]
t+1
ν̃2

+
ν̃2 − 1

2ν̃2
2

(26)

5. Modelling Daily Stock Transactions

This section focusses on the number of daily stock transactions of the two most eminent
banking institutions in Mauritius, namely Mauritius Commercial Bank Group Limited
(MCB) and State Bank of Mauritius Holdings Ltd. (SBMH), that are listed on SEM. The
daily stock transactions refers to the number of times stocks are bought and sold at the
prevailing price during the trading session. MCB and SBMH are licensed by the Bank
of Mauritius and have the biggest market share in the country. MCB was founded in
1838 and is the oldest and largest banking institution in Mauritius, while SBMH is the
second largest commercial bank established in 1973. The total assets of MCB is nearly USD
15.8 billion, with a market capitalization on the SEM of USD 1.5 billion. MCB is owned
by almost 22,000 domestic and foreign shareholders, has over 1.1 million individual and
institutional clients and employs approximately 3700 staff. On the other hand, the total
assets of SBMH is nearly USD 6.6 billion, with a market capitalization on the SEM of USD
253 million. SBMH is owned by almost 18,518 domestic and international shareholders, has
over 0.75 million individual and institutional customers and employs approximately 2845
staff. The COVID-19 pandemic since the year 2020 has caused unprecedented disruptions
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and created innumerable challenges for both commercial banks. In the wake of this difficult
time, many investors of the SEM have been negatively affected and has been navigating in
the red zone for quite some time because of the uncertainty prevailing due to the COVID-19
pandemic. MCB and SBMH have not been spared by the pandemic and their performance
on the SEM has been affected negatively since the pandemic. Hence, it is of upmost
importance to model the number of daily stock transactions of these two banks and provide
reliable estimates to the investors so that they can decide whether they need to hold or sell
the shares of MCB and SBMH.

The transactions of MCB and SBMH must be inter-related as they operate in the same
sector, namely the banking sector and provides the same line of services and financial activ-
ities. Thus, we collected data from the several brokers on the number of daily transactions
of these two banking institutions from 4 October to 10 December 2021 over 30 min intervals.
As far the covariates are concerned, based on previous researchers [1,3–5], the following
variables were identified as those influencing the number of daily stock transactions on the
SEM: the intervention of any COVID-19 news that affect the financial market, the time of
day effect and the day effect.

Hence, in this section, we analyze the intra-day stock transactions of MCB and SBMH
using a novel time series model, namely the BINARMA (1,1) model with CMP innovations.
The Stock market data for the number of daily transactions were collected from the SEM for
MCB and SBMH within 30 min interval from 4 October to 10 December 2021, amounting to
450 paired observations. In the same line, the covariates that influence these daily stock
transactions were recorded as follows: information on COVID-19 news (xt1) where 1 refers
for any new COVID-19 information which influence the stock trading of SBMH and MCB
and 0 for no COVID-19 information, Friday effect (xt2) where 1 refers to trading conducted
on Fridays and 0 for trading conducted on Mondays, Tuesdays, Wednesdays and Thursdays
and time of the day effect (xt3) where 1 refers to the trading effected during the time period
12:00–13:30 and 0 for the trading between 09:00 and 12:00. Normally, the SEM operates
from Monday to Friday only between 09:00 to 13:30 and is closed on public holidays. Based
on 450 paired observations, the time series plots and the descriptive statistics are shown in
Figures 1–4 and Table 1.
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Figure 1. Time series plot for SBMH.
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Figure 2. ACF plot for SBMH.
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Figure 3. Time series plot for MCB.
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Figure 4. ACF plot for MCB.

Table 1. Summary statistics for the intra-day transactions of SBMH and MCB.

Sample Mean Sample Variance Sample Lag-1 Sample Cross-Correlation

SBMH 1.0765 1.4191 0.5867 0.1617

MCB 1.0393 1.0154 0.5116
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From Table 1, we can conclude that the SBMH data series is slightly over-dispersed
while the MCB data series is slightly under-dispersed. Both series have an average sam-
ple lag-1 correlation, with a sample cross-correlation of 0.1617, which confirms both the
existence of relationship between as well as within the two series. As for the ACF plots,
we observe that for both series that lag-1 has the highest peak. Thus, the proposed BI-
NARMA (1,1) model with CMP innovations is used to model the in-sample daily trad-
ing of SBMH (Y[1]

t ) and MCB (Y[2]
t ) between 4 October and 3 December 2021, totalling

405 paired observations, while the out-sample from 5 December to 10 December 2021 is
used to validate the model. We also apply the bivariate integer-valued autoregressive
model of order 1 with CMP innovations (BINAR(1)CMP) developed by Jowaheer et al. [6]
and the bivariate integer-valued moving average model of order 1 with CMP innova-
tions (BINMA(1)) developed by Mamodekhan et al. [7] on the intra-day series. Under
λ
[k]
t = exp(β̂

[k]
0 + β̂

[k]
1 xt1 + β̂

[k]
2 xt2 + β̂

[k]
3 xt3), the estimates of the covariate effects under the

application of the three models are shown in Table 2.

Table 2. Intra-day transactions for MCB and SBMH: Estimates of the regression parameters.

Models Series β̂0 β̂1 β̂2 β̂3

Y[1]
t 0.2268 0.2633 0.1482 0.1399

BINARMA (1,1) CMP
s.e (0.1975) (0.0581) (0.0288) (0.0295)

Y[2]
t 0.1543 0.2456 0.1297 0.1193

s.e (0.2259) (0.0447) (0.0350) (0.0587)

Y[1]
t 0.2122 0.2530 0.1533 0.1264

BINMA(1)CMP
s.e (0.2089) (0.0615) (0.0314) (0.0322)

Y[2]
t 0.1650 0.2627 0.1074 0.1317

s.e (0.2451) (0.0566) (0.0416) (0.0661)

Y[1]
t 0.2412 0.2490 0.1231 0.1211

BINAR(1)CMP
s.e (0.2159) (0.0691) (0.0375) (0.0388)

Y[2]
t 0.1856 0.2659 0.0926 0.1262

s.e (0.2517) (0.0612) (0.0487) (0.0701)

From the regression coefficients Table 2, we observe that the estimates of the covariates
obtained using the BINARMA (1,1) CMP have lower standard errors compared to those ob-
tained using BINAR(1)CMP and BINMA(1)CMP and hence, we interpret only the estimates
of the BINARMA (1,1) CMP model. We can also notice that all the explanatory variables are
significant, thus confirming their influence on the number of intra-day transactions of MCB
and SBMH. Since the pandemic of COVID-19 started in the year 2020, any news entering
the domestic market pertaining to confinement, number of COVID-19 cases in Mauritius,
potential vaccines against COVID-19, the gradual recovery of the economy and the lifting
of the confinement have caused an increase in the number of inra-day stock transactions of
both MCB and SBMH. For SBMH, as news filter in the market, we expect an increase in
the stock transactions of 30.1 percent and 27.8 percent for MCB. From these figures, we can
conclude that there are more trading for SBMH stocks than MCB stocks as MCB is a more
robust bank than SBMH. The other two explanatory variables, namely the Friday and time
effects, have also affected the number of intra-day transactions of MCB and SBMH, but
their influence were lower than the COVID-19 news effect. From the correlation Table 3,
we can confirm that there exists a relationship within and between the number of daily
trading of MCB and SBMH.
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Table 3. Intra-day transactions for MCB and SBMH: Estimates of the dependence parameters.

Models Parameters γ̂11 γ̂22 γ̂12 γ̂21

BINARMA (1,1) CMP
Correlation 0.3117 0.1096 0.0825 0.3988

s.e (0.0440) (0.0322) (0.0533) (0.0564)

BINMA(1)CMP
Correlation 0.3182 0.1112 0.0875 0.3893

s.e (0.0488) (0.0351) (0.0561) (0.0590)

BINAR(1)CMP
Correlation 0.3021 0.1178 0.0802 0.4049

s.e (0.0498) (0.0377) (0.0581) (0.0595)

Using the forecasting Equations (23) and (24), we compute the one-step ahead forecast
of the number of stock trading of SBMH and MCB based on the out-sample trading
data between 5 December to 10 December 2021, totalling 45 paired observations and the
corresponding root mean square errors (RMSEs) for three models with CMP innovations
are shown in Table 4:

Table 4. RMSEs for the out-sample number of intra-day transactions of MCB and SBMH.

Models RMSE Y [1]
t RMSE Y [2]

t

BINARMA (1,1) CMP 0.1511 0.1285

BINMA(1)CMP 0.1598 0.1357

BINAR(1)CMP 0.1655 0.1469

From Table 4, we observe that the BINARMA (1,1) CMP provide better RMSEs than
BINAR(1)CMP and BINMA(1)CMP.

6. Conclusions

This paper considers the modeling of the intra-day transactions of two most prestigious
banking companies: MCB and SBMH in Mauritius and how the COVID-19 pandemic has
affected the stock transactions of these two commercial banks. Since the time series data of
one bank is over-dispersed and the other one is under-dispersed, we develop a BINARMA
(1,1) process with CMP innovation terms to model these data. In this paper, a CML
approach is used to estimate the regression and correlation parameters for the two series.
This novel BINARMA (1,1) CMP model together with the CML were then applied to
estimate the regression and correlation effects of the intra-day transactions where it was
found to yield significant estimates for the time of trade, Friday and COVID-19 news effect.
The forecasting equations were also developed and they yield reliable estimates for the
volume of transaction for the two series based on the real figures.
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