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Abstract: This paper introduces an open source and reproducible implementation of Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) networks for time series forecasting. We evaluated
LSTM and GRU networks because of their performance reported in related work. We describe our
method and its results on two datasets. The first dataset is the S&P BSE BANKEX, composed of
stock time series (closing prices) of ten financial institutions. The second dataset, called Activities,
comprises ten synthetic time series resembling weekly activities with five days of high activity and
two days of low activity. We report Root Mean Squared Error (RMSE) between actual and predicted
values, as well as Directional Accuracy (DA). We show that a single time series from a dataset can be
used to adequately train the networks if the sequences in the dataset contain patterns that repeat,
even with certain variation, and are properly processed. For 1-step ahead and 20-step ahead forecasts,
LSTM and GRU networks significantly outperform a baseline on the Activities dataset. The baseline
simply repeats the last available value. On the stock market dataset, the networks perform just
as the baseline, possibly due to the nature of these series. We release the datasets used as well as
the implementation with all experiments performed to enable future comparisons and to make our
research reproducible.

Keywords: forecasting; time series; open source; reproducibility

1. Introduction

Artificial Neural Networks (ANNs) and particularly Recurrent Neural Networks
(RNNs) gained attention in time series forecasting due to their capacity to model depen-
dencies over time [1]. With our proposed method, we show that RNNs can be successfully
trained with a single time series to deliver forecasts for unseen time series in a dataset
containing patterns that repeat, even with certain variation; therefore, once a network is
properly trained, it can be used to forecast other series in the dataset if adequately prepared.

LSTM [2] and GRU [3] are two related deep learning architectures from the RNN
family. LSTM consists of a memory cell that regulates its flow of information thanks to
its non-linear gating units, known as the input, forget and output gates, and activation
functions [4]. GRU architecture consists of reset and update gates and activation functions.
Both architectures are known to perform equally well on sequence modeling problems, yet
GRU was found to train faster than LSTM on music and speech applications [5].

Empirical studies on financial time series data reported that LSTM outperformed
Autoregressive Integrated Moving Average (ARIMA) [6]. ARIMA [7] is a traditional
forecasting method that integrates autoregression with moving average processes. In [6],
LSTM and ARIMA were evaluated on RMSE between actual and predicted values on
financial data. The authors suggested that the superiority of LSTM over ARIMA was
thanks to gradient descent optimization [6]. A systematic study compared different ANNs
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architectures for stock market forecasting [8]. More specifically, the authors evaluated
architectures of the types LSTM, GRU, Convolutional Neural Networks (CNN) and Extreme
Learning Machines (ELM). In their experiments, two-layered LSTM and two-layered GRU
networks delivered low RMSE.

In this study, we evaluate LSTM and GRU architectures because of their performance
reported in related work for time series forecasting [6,8]. Our method is described in
Section 2. In Sections 2.1–2.3, we review principles of Recurrent Neural Networks (RNN) of
the type LSTM and GRU. In Section 2.4, we explain our data preparation, followed by the
networks’ architecture, training (Section 2.5) and evaluation (Section 2.6). The evaluation
was performed on two datasets. In Section 3.1, we describe the S&P BSE-BANKEX or
simply BANKEX dataset, which was originally described in [8] and consists of stock time
series (closing prices). In Section 3.2, we describe the Activities dataset, a dataset composed
of synthetic time series resembling weekly activities with five days of high activity and
two days of low activity. The experiments are presented in Section 3. Finally, we state
our conclusions in Section 5 and present possible directions for future work. We release
the datasets used as well as the implementation with all experiments performed to enable
future comparisons and make our research reproducible.

2. Method

The general overview of the method is described as follows. The method inputs time
series of values over time and outputs predictions. Every time series in the dataset is
normalized. Then, the number of test samples is defined to create the training and testing
sets. One time series from the train set is selected and prepared to train an LSTM and a
GRU, independently. Once the networks are trained, the test set is used to evaluate RMSE
and DA between actual and predicted values for each network. The series are transformed
back to unnormalized values for visual inspection. We describe every step in detail. Next,
in Sections 2.1–2.3, we review principles of RNNs of the type LSTM and GRU, following
the presentation as in [5].

2.1. Recurrent Neural Networks

ANNs are trained to approximate a function and learn the networks’ parameters
that best approximate that function. RNNs are a special type of ANNs developed to
handle sequences. An RNN updates its recurrent hidden state ht for a sequence x =
(x1, x2, . . . , xT) by:

ht =

{
0, t = 0

φ(ht−1, xt), otherwise,
(1)

where φ is a nonlinear function. The output of an RNN maybe of variable length y =
(y1, y2, . . . , yT).

The update of ht is computed by:

ht = g(Wxt + Uht−1), (2)

where W and U are weights’ matrices and g is a smooth and bounded activation function
such as a logistic sigmoid, or simply called sigmoid function f (x) = σ = 1

1+e−x , or a

hyperbolic tangent function f (x) = tanh(x) = ex−e−x

ex+e−x .
Given a state ht, an RNN outputs a probability distribution for the next element in a

sequence. The sequence probability is represented as:

p(x1, x2, . . . , xT) = p(x1)p(x2 | x1) . . . p(xT | x1, x2, . . . , xT−1). (3)

The last element is a so-called end-of-sequence value. The conditional probability
distribution is given by:

p(xt | x1, x2, . . . xt−1) = g(ht), (4)
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where ht is the recurrent hidden state of the RNN as in expression (1). Updating the
network’s weights involves several matrix computations, such that back-propagating
errors lead to vanishing or exploding weights, making training unfeasible. LSTM was
proposed in 1997 to solve this problem by enforcing constant error flow thanks to gating
units [2]. GRU is a closely related network proposed in 2014 [3]. Next, we review LSTM
and GRU networks. See Figure 1 for illustration.

Figure 1. LSTM (left) and GRU (right). c represents the memory cell and c̃ the new memory cell of
the LSTM. h represents the activation and h̃ the new activation of the GRU. Based on [5].

2.2. Long Short-Term Memory

The LSTM unit decides whether to keep content memory thanks to its gates. If a
sequence feature is detected to be relevant, the LSTM unit keeps track of it over time,
modeling dependencies over long-distance [5].

In Expressions (6)–(8) and (10), W and U represent weights matrices and V represents
a diagonal matrix. W, U and V need to be learned by the algorithm during training. The
subscripts i, o and f correspond to input, output and forget gates, respectively. For every
j-th LSTM unit, there is a memory cell cj

t at time t, which activation hj
t is computed as:

hj
t = oj

ttanh(cj
t) (5)

where oj
t is the output gate responsible for modulating the amount of memory in the cell.

The forget gate f j
t modulates the amount of memory content to be forgotten and the input

gate ij
t modulates the amount of new memory to be added to the memory cell, such that:

oj
t = σ(Woxt + Uoht−1 + Voct)

j, (6)

f j
t = σ(W f xt + U f ht−1 + Vf ct−1)

j, (7)

ij
t = σ(Wixt + Uiht−1 + Vict−1)

j. (8)

where σ is a sigmoid function. The memory cell cj
t partially forgets and adds new memory

content c̃j
t by:

cj
t = f j

t cj
t−1 + ij

t c̃
j
t, (9)

where:
c̃j

t = tanh(Wcxt + Ucht−1)
j. (10)

2.3. Gated Recurrent Unit

The main difference between LSTM and GRU is that GRU does not have a separate
memory cell, such that the activation hj

t is obtained by the following expression:

hj
t = (1− zj

t)h
j
t−1 + zj

t h̃
j
t. (11)
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The update gate zj
t decides the amount of update content given by the previous hj

t−1

and candidate activation h̃j
t. In Expressions (12)–(14), W and U represent weights matrices

that need to be learned during training. Moreover, the subscripts z and r correspond to
update and reset gates, respectively. The update gate zj

t and reset gate rj
t are obtained by

the following expressions:
zj

t = σ(Wzxt + Uzht−1)
j, (12)

rj
t = σ(Wrxt + Urht−1)

j, (13)

where σ is a sigmoid function. The candidate activation h̃j
t is obtained by:

h̃j
t = tanh(Wxt + rt � (Uht−1))

j. (14)

where � denotes element-wise multiplication.

2.4. Data Preparation

Every time series or sequence in the dataset is normalized as follows. Let v be a
sequence v = (v1, v2, . . . , vQ) of Q samples that can be normalized between 0 and 1:

x = v′ =
v− vmin

vmax − vmin
. (15)

We define the number of samples in the test set as tests. The number of samples N for
training is obtained by N = Q− tests − w. Then, a sequence x is selected arbitrarily and
prepared to train each network as follows. We define a window of size w and a number of
steps ahead f , where f < w < N < Q, such that:

X =


x1 x2 . . . xw
x2 x3 . . . xw+1
x3 x4 . . . xw+2
. . . . . . . . . . . .

xQ−(w−1+ f ) xQ−(w−2+ f ) . . . xQ− f

,

X becomes a Q− (w− 1 + f ) by w matrix, and:

Y =


xw+1 xw+2 . . . xw+ f
xw+2 xw+3 . . . xw+2+ f
xw+3 xw+4 . . . xw+3+ f
. . . . . . . . . . . .

xQ−( f−1) xQ−( f−2) . . . xQ

 (16)

becomes a Q− (w− 1 + f ) by f matrix containing the targets. The first N rows of X and
Y are used for training. The remaining Q− N elements are used for testing. The settings
for our experiments are described in Section 3, after we introduce the characteristics of the
dataset used.

2.5. Networks’ Architecture and Training

We tested two RNNs. One with LSTM memory cells and one with GRU memory cells.
In both cases, we use the following architecture and training:

• A layer with 128 units,
• A dense layer with size equal to the number of steps ahead for prediction,

with recurrent sigmoid activations and tanh activation functions as explained in
Sections 2.2 and 2.3. The networks are trained for 200 epochs with Adam optimizer [9].
The number of epochs and architecture were set empirically. We minimize Mean Squared
Error (MSE) loss between the targets and the predicted values, see Expression (17). The
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networks are trained using a single time series prepared as described in Section 2.4. The
data partition is explained in Section 3.3.

2.6. Evaluation

We use Mean Squared Error (MSE) to train the networks:

MSE = n−1
n

∑
t=1

(xt − yt)
2, (17)

where n is the number of samples, xt and yt are actual and predicted values at time t.
Moreover, we use Root Mean Squared Error (RMSE) for evaluation between algorithms:

RMSE =
√

MSE. (18)

Both metrics, MSE and RMSE, are used to measure the difference between actual and
predicted values, and therefore, smaller results are preferred [10]. We also use Directional
Accuracy (DA):

DA =
100
n

n

∑
t=1

dt, (19)

where:

dt =

{
1 (xt − xt−1)(yt − yt−1) ≥ 0
0 otherwise.

such that xt and yt are the actual and predicted values at time t, respectively, and n is the
sample size. DA is used to measure the capacity of a model to predict direction as well as
prediction accuracy. Thus, higher values of DA are preferred [10].

3. Experiments

In this section, we report experiments performed with both datasets.

3.1. The S&P BSE BANKEX Dataset

This dataset was originally described in [8]; however, our query retrieved a different
number of samples as in [8]. We assume it must have changed since it was originally
retrieved. We collected the time series on 20 January 2022, using Yahoo! Finance’s API [11]
for the time frame between 12 July 2005, and 3 November 2017, see Table 1. Most time
series had 3035 samples, and some time series had 3032 samples; therefore, we stored each
time series’s last 3032 samples. Figure 2 presents the time series of BANKEX without and
with normalization.

Table 1. Entities in the S&P BSE-BANKEX Dataset.

Number Entity Symbol

1 Axis Bank AXISBANK.BO
2 Bank of Baroda BANKBARODA.BO
3 Federal Bank FEDERALBNK.BO
4 HDFC Bank HDFCBANK.BO
5 ICICI Bank ICICIBANK.BO
6 Indus Ind Bank INDUSINDBK.BO
7 Kotak Mahindra KOTAKBANK.BO
8 PNB PNB.BO
9 SBI SBIN.BO
10 Yes Bank YESBANK.BO
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(a)

(b)

Figure 2. (a) Time series in the BANKEX dataset without normalization. Closing Price in Indian
Rupee (INR). Daily samples retrieved between 12 July 2005 and 3 November 2017 using Yahoo!
Finance’s API [11]. All time series with 3032 samples. (b) Same time series as in (a), but with
normalization; closing price normalized between 0 and 1. The numbers from 1 to 10 correspond to
the numbers (first column) for each series in Table 1.

3.2. The Activities Dataset

The Activities dataset is a synthetic dataset created resembling weekly activities with
five days of high activity and two days of low activity. The dataset has ten time series with
3584 samples per series. Initially, a pattern of five ones followed by two zeros was repeated
to obtain a length of 3584 samples. The series was added a slope of 0.0001. The original
series was circularly rotated for the remaining series in the dataset, to which noise was
added, and each sequence was arbitrarily scaled, so that the peak-to-peak amplitude of
each series was different, see Figure 3.
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Figure 3. Time series in the Activities dataset without normalization, first 100 samples.

3.3. Datasets Preparation and Partition

Following Section 2.4, every time series was normalized between 0 and 1. We used a
window of size w = 60 days. We tested for f = 1 and f = 20 steps ahead. We used the last
251 samples of each time series for testing. We selected arbitrarily the first time series of
each dataset for training our LSTM and GRU networks.

3.4. Results

The results are presented in Tables 2–5. Close-to-zero RMSE and close-to-one DA
are preferred. On the Activities dataset, two-tailed Mann–Whitney tests show that for
1-step ahead forecasts, RMSE achieved by any RNN is significantly lower than that de-
livered by the baseline (LSTM & Baseline: U = 19, n = 10, 10, p < 0.05. GRU & Baseline:
U = 0, n = 10, 10, p < 0.05). In addition, GRU delivers significantly lower RMSE than
LSTM (U = 91, n = 10, 10, p < 0.05). In terms of DA, both RNN perform equally well and
significantly outperform the baseline. For 20-step ahead forecasts, again both RNNs achieve
significantly lower RMSE than the baseline (LSTM & Baseline: U = 0, n = 10, 10, p < 0.05.
GRU & Baseline: U = 0, n = 10, 10, p < 0.05). This time, LSTM achieves lower RMSE than
GRU (U = 10, n = 10, 10, p < 0.05) and higher DA (U = 81, n = 10, 10, p < 0.05).

Table 2. One-step ahead forecast on Activities dataset. RMSE: columns 2 to 4. DA: columns 5 to 7.

RMSE DA

LSTM GRU Baseline LSTM GRU Baseline

Mean 0.2949 0.1268 0.3730 0.6360 0.6236 0.4212
SD 0.0941 0.0425 0.0534 0.0455 0.0377 0.0403

Table 3. Twenty-step ahead forecast on Activities dataset. RMSE: columns 2 to 4. DA: columns 5 to 7.

RMSE DA

LSTM GRU Baseline LSTM GRU Baseline

Mean 0.1267 0.2048 0.4551 0.6419 0.6261 0.4805
SD 0.0435 0.0683 0.0678 0.0331 0.0255 0.0413

Table 4. One-step ahead forecast on BANKEX dataset. RMSE: columns 2 to 4. DA: columns 5 to 7.

RMSE DA

LSTM GRU Baseline LSTM GRU Baseline

Mean 0.0163 0.0163 0.0161 0.4884 0.4860 0.4880
SD 0.0052 0.0056 0.0056 0.0398 0.0385 0.0432
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Table 5. Twenty-step ahead forecast on BANKEX dataset. RMSE: columns 2 to 4. DA: columns 5 to 7.

RMSE DA

LSTM GRU Baseline LSTM GRU Baseline

Mean 0.0543 0.0501 0.0427 0.5004 0.5004 0.4969
SD 0.0093 0.0064 0.0113 0.0071 0.0087 0.0076

On the BANKEX dataset, two-tailed Mann–Whitney tests show that for 1-step ahead
forecasts there is no difference among approaches considering RMSE (LSTM & Baseline:
U = 51, n = 10, 10, p > 0.05. GRU & Baseline: U = 55, n = 10, 10, p > 0.05. LSTM & GRU:
U = 49, n = 10, 10, p > 0.05). Similar results are found for 20-step ahead forecasts (LSTM
& Baseline: U = 76, n = 10, 10, p > 0.05. GRU & Baseline: U = 67, n = 10, 10, p > 0.05.
LSTM & GRU: U = 66, n = 10, 10, p > 0.05). DA results are consistent with those obtained
for RMSE. Figure 4a,b show examples of 20-step ahead forecasts and Figure 5 presents an
example of 1-step ahead forecasts. Visual inspection helps understand the results.

(a) (b)

Figure 4. Examples of 20-step ahead forecast. (a) Activities dataset. (b) BANKEX dataset.

Figure 5. Example of 1-step ahead forecast. Actual and predicted closing price over the first 100 days
of the test set Yes Bank. Closing Price in Indian Rupee (INR).

4. Discussion

The motivation for developing a reproducible and open-source framework for time
series forecasting relates to our experience in trying to reproduce previous work [6,8]. We
found it challenging to find implementations that are simple to understand and replicate. In
addition, datasets are not available. We discontinued comparisons with [8], since the dataset
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we collected was slightly different, and we were unsure if the reported results referred
to normalized values or not. If the algorithms are described but the implementations are
not available, a dataset is necessary to compare forecasting performance between two
algorithms, such that a statistical test can help determine if one algorithm is significantly
more accurate than the other [12] (pp. 580–581).

5. Conclusions

We proposed a method for time series forecasting based on LSTM and GRU and
showed that these networks can be successfully trained with a single time series to deliver
forecasts for unseen time series in a dataset containing patterns that repeat, even with
certain variation. Once a network is properly trained, it can be used to forecast other series
in the dataset if adequately prepared. We tried and varied several hyperparameters. On
sequences, such as those resembling weekly activities that repeat with certain variation,
we found an appropriate setting; however, we failed to find an architecture that would
outperform a baseline on stock market data; therefore, we assume that we either failed
at optimizing the hyperparameters of the networks, the approach is unsuitable for this
application, or we would need extra information that is not reflected in stock market series
alone. For future work, we plan to benchmark different forecasting methods against the
method presented here. In particular, we want to evaluate statistical methods as well as
other machine learning methods that have demonstrated strong performance on forecasting
tasks [13]. We release our code as well as the dataset used in this study to allow this research
to be reproducible.
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