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Abstract: It is no longer possible to imagine our everyday life without time series data. This includes,
for example, market developments, COVID-19 cases, electricity prices, and other data from a wide
variety of domains. An important task in the analysis of these data is the detection of anomalies.
In most cases, this is accomplished by examining individual time series. In our work, we use the
techniques of cluster analysis to establish a relationship between time series and groups of time
series. This relationship allows us to observe the development of time series in their entirety, thereby
gaining additional insights. Our approach identifies outliers with a real-world reference and enables
the user to locate outliers without prior knowledge. To underline the strengths of our approach, we
compare our method with another known method on two real-world datasets. We found that our
solution needs significantly fewer calculations, produces more reasonable results, and can be applied
to real-time data. Moreover, our method detected additional outliers, whose occurrence could be
explained by real events.

Keywords: outlier detection; outlier detection in time series; time series analysis; time series cluster-
ing; time series cluster evaluation

1. Introduction

Outlier or anomaly detection in time series is the problem of identifying rare or
deviating observations in (univariate or multivariate) time series. Those observations
may occur once or form a sequence when arising multiple times in a row. Finding
anomalies in time series can be beneficial in a variety of applications, such as fraud
detection in stock markets [1,2], anomaly detection in network data [3,4], and the de-
tection of unusual time series in medical data [5,6]. The sheer number of possible ap-
plications of anomaly detection in time series makes it important for industry; there-
fore, it has been implemented in a number of business applications released by Google
(https://cloud.google.com/blog/products/data-analytics/ (accessed on 10 April 2022)),
RapidMiner (https://rapidminer.com/glossary/anomaly-detection/ (accessed on 10 April
2022)), Microsoft, and IBM [7,8]. The broad diversity of applications and products indicates
a variation in the underlying data, which requires specific solutions in order to detect
meaningful anomalies. Furthermore, outliers may also be defined differently, depending
on the context at hand.

Most approaches focus on the detection of anomalous observations or subsequences in
a single time series. This is useful for many applications but does not include a comparison
to other time series from the same domain. However, assuming that time series from
the same context are influenced by similar framework conditions, such a comparison
becomes necessary. The idea of outlier detection by comparing time series is part of

Eng. Proc. 2022, 18, 3. https://doi.org/10.3390/engproc2022018003 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2022018003
https://doi.org/10.3390/engproc2022018003
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0001-5690-199X
https://orcid.org/0000-0002-1458-6546
https://orcid.org/0000-0003-1504-9889
https://orcid.org/0000-0003-2788-3854
https://cloud.google.com/blog/products/data-analytics/
https://rapidminer.com/glossary/anomaly-detection/
https://doi.org/10.3390/engproc2022018003
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2022018003?type=check_update&version=1


Eng. Proc. 2022, 18, 3 2 of 12

recent research and often applies Dynamic Time Warping (DTW) techniques [9,10] or the
Granger Causality [11,12]. Although, these approaches are able to identify anomalous data
points or even subsequences, they are limited to the comparison of only two time series
at a time. The comparison of one time series to a group of other time series at the same
time is, therefore, the next logical step; however, it also requires techniques to localize
corresponding groups. The latter is well researched and is referred to as cluster analysis in
time series.

In general, the goal of cluster analysis is to group objects with the objects in the same
group being as similar as possible to each other and the objects from different groups being
as dissimilar as possible. The similarity between two objects is usually expressed by a
distance function (e.g., Euclidean distance). The number of existing clustering algorithms
is very large; hence, which one should be used depends, among other things, on the given
data and performance requirements. There are also different approaches for the clustering
of time series. Examples of these are clustering using common methods with an explicit
distance function for time series, clustering of multiple time series at each point in time, or
using a clustering algorithm that was specifically developed for time series.

An example of a clustering algorithm developed for time series (based on K-means [13])
is the method of Chakrabarti et al. [14]. The authors claim that their algorithm can pre-
serve a certain consistency of clusters in consecutive points in time. A recent study by
Tatusch et al. [15], however, has shown, that the development of time-series adapted al-
gorithms is not implicitly required to preserve this consistency. Instead, it is sufficient to
find corresponding parameters for existing not-time-adjusted clustering algorithms. In a
different work, the authors also demonstrate the use of this technique to find behavioral
outliers in time series. Although the results are convincing, the given method is not appli-
cable to streaming data because it is decidedly computationally intensive. Furthermore,
the approach of Tatusch et al. [16] requires the user to set a threshold, which is based on
the time-series over-time stability. However, the construct of this stability measure is not
intuitive; therefore, it may be very difficult to find appropriate values for the threshold.

In this paper, we present an alternative approach based on a cluster over-time stability
evaluation measure called CLOSE [15] that is significantly less computationally expensive.
Moreover, the results are based on a much more intuitive threshold that incorporates
the cluster membership of time series. We compare the obtained results with those of
Tatusch et al. [16].

In the remainder of this section, we provide the necessary notations and definitions
(Section 1.1). In the next section, we first introduce a categorization of machine learning
methods to time series analysis. Based on this categorization, we present the related work
with the respective fundamental concepts and discuss the limitations in comparison to
our solution. In Section 3, we describe our method mathematically with examples for
every introduced definition. Then, we propose an optimization to reduce the number of
computations required and, thus, to improve the performance of our method. In Section 4,
we compare the results of our method with the results of Tatusch et al. [16], a solution
with a similar key idea. To ensure a fair comparison, we use the same data set and
hyperparameters as in [16]. Finally, we conclude and discuss possible future work in
Section 5.

1.1. Notation and Definitions

Since we compared our procedure with that of Tatusch et al. [16], we adapted the
definitions they provided.

Definition 1 (Time Series). A time series TSx = x1, . . . , xn is an ordered set of n real-valued
data points of any dimension. The data points are ordered chronologically by time. The order is
represented by the corresponding indices of the data points.
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Definition 2 (Subsequence). A subsequence Sx,[k,m] = xk, . . . , xm of a time series TSx is an
ordered subset of m− k real-value data points of TSx with k < m and ∀xl ∈ TSx : k < l < m :
xl ∈ Sx,[k,m].

Definition 3 (Data Set). A data set D = {TS1, . . . , TSm} is a set of m time series of the same
length n and equivalent points in time.

Definition 4 (Cluster). A cluster Ci,t at time t with i ∈ 1, . . . , p being an unique identifier, is
a set of similar data points, identified by a clustering algorithm. All clusters have distinct labels
regardless of time.

Definition 5 (Cluster Member). A cluster Ci,t at time t with i ∈ 1, . . . , p being an unique
identifier, is a set of similar data points identified by a clustering algorithm. All clusters have distinct
labels regardless of time.

2. Related Work

The different nature of data and approaches has led to a variety of diverse definitions
of outliers; however, the general definition according to Douglas M. Hawkins is often used:
“An observation which deviates so much from other observations as to arouse suspicions
that it was generated by a different mechanism” [17]. The observations mentioned may
have been made at one point in time or over a period of time and refer to univariate or
multivariate time series. To capture the differences in both data and methods, Blázquez-
García et al. [18] proposed a taxonomy that categorizes methods for anomaly detection
in time series by three axes: input data (i.e., univariate, multivariate), outlier type (i.e.,
point, subsequence, time series) and nature of the method (i.e., univariate, multivariate).
The latter describes whether a technique converts a multivariate time series into multiple
univariate time series before further processing of the data. In the following, the described
taxonomy is used to categorize the methods presented in the remainder of this section.

One method that can be categorized according to the described taxonomy under
methods of univariate nature with the support of point and subsequence outliers was
presented by Sun et al. [19]. The goal of the method is to detect anomalies in character
sequences. Therefore, a probabilistic suffix tree is first constructed from character sequences,
which is then used to estimate the probability of a point or subsequence being an anomaly.
Due to the fact that the method takes univariate character sequences as input, a time series
must first be converted into such a sequence, e.g., by SAX [20], in order to be processed in
the following steps. In contrast, our proposed method can process time series without first
having to convert them into a different (reduced) representation.

Alternatively, Munir et al. [21] introduced a method, that is multivariate in nature and
can be applied equally to both types of time series. It consists of two modules: a CNN-based
event predictor and a distance-function-based anomaly detector. As the name suggests,
the event predictor predicts the next event based on all given time series, and the anomaly
detector determines whether the deviation between the prediction and the occurred event
is higher than a certain threshold. Thus, the outlier type handled by this method is a point
in time. Compared to the supervised CNN-based event predictor, our proposed method is
unsupervised, so that a training phase is not required. Moreover, the approach presented
here has a white box character, which allows a more detailed analysis of outlier formation.

In contrast to the black box model of Munir et al. [21], Hyndman et al. [22] proposed a
white box method exclusively for anomaly detection in multivariate time series. In their
study, they extracted 18 features from each time series first. Then, principal components
were determined from the data points of these features. Finally, a density based multidimen-
sional anomaly detection algorithm [23] was applied to the first two principal components
to detect anomalous time series. Although the method has a good performance and accu-
racy compared to other presented models, the approach contains a number of drawbacks.
On one hand, the feature extraction from time series and the dimension reduction by PCA
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(Principal Component Analysis) can lead to a loss of important information. On the other
hand, principal components generally have a low interpretability. In this context, it can be
difficult to determine the impact of features on the outlier detection. Since we consider the
dimensions of the time series as a whole in our approach, there is no loss of information.
In addition, based on cluster transitions and the reasons for those transitions, our method
allows a detailed analysis of the occurrence of anomalous subsequences.

In response to the fact that several approaches (including those described here) focused
on the deviation of one time series from the others, Tatusch et al. [16] presented a method
for anomalous subsequence detection, which examines the behavior of a time series relative
to their peers. For this, all time series are first clustered per timestamp; then, the transitions
of time series between clusters are analyzed. If a time series or its subsequence frequently
moves to different clusters compared to its peers from previous clusters, it will obtain a
higher outlier score. According to this method, a time series or its subsequence is an outlier,
if the outlier score exceeds a threshold, which must be specified by the user. In other words,
if a time series changes its group often enough over time, it will be identified as an outlier.

As for any threshold that has to be set by a user, the approach of Tatusch et al. [16]
raises the question of what value to set it to. Thus, the problem arises that the outlier
score is not intuitive. While an outlier score of zero states that the corresponding time
series is consistently in the same clusters with its peers over time, an outlier score from an
interval I = [0, 1] can be much more difficult to interpret. Further, under the assumption
that all time series of a dataset D have the same length l, the proposed method requires K
computations to find all anomalous subsequences in D, where K is defined as:

K =
(l − 1)2 + (l − 1)

2
∗ |D|

Finally, Tatusch et al. [16] differentiate between two outlier types: outliers by distance
and intuitive outliers. Outliers by distance can be detected based on their outlier score,
and intuitive outliers are subsequences consisting of noise which can arise during clustering
per timestamp. This distinction is necessary to be able to categorize the latter type of
subsequences as outlier as well, since the outlier score for these would be zero.

In our work, we present an alternative definition of an outlier, which is also based on a
clustering of the time series per timestamp; however, it addresses the problems listed for the
approach of Tatusch et al. [16]. Thus, the threshold of our method is more intuitive, contains
no need to differentiate between any types of outliers, and the number of computations K′,
based on the same assumptions as above, is smaller with:

K′ = (l − 1) ∗ |D|

For this purpose, the given time series are clustered per timestamp first. Then, scores
are calculated for each time series between consecutive timestamps, indicating the number
of peers with which the time series remains in the same cluster. Finally, a threshold is
defined to indicate how unique a path between two clusters in consecutive timestamps
must be for the corresponding subsequence to be classified as an anomaly.

3. Method

Building on the described fundamentals, this section first introduces further terminol-
ogy that is necessary to understand the method. This is followed by the definition of an
anomalous subsequence of a time series. Finally, a way to find all anomalous subsequences
within a time series is presented.

For a better illustration of the equations and corresponding calculations, we refer to the
example given in Figure 1, which represents multiple time series clustered per timestamp.
In the context of this work, data points defined as noise are considered as separate clusters.
Thus, the data points of the time series TS f are assigned to the clusters Cr,1 and Cv,2 at
timestamps one and two.
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Figure 1. Example: clustering per timestamp.

The first term which will be relevant in the rest of this section is the cluster transitions
set ct. A single cluster transition of a time series TSy is a tuple of two cluster labels
indicating in which clusters two adjacent data points of TSy are located. Thus, a set of
cluster transitions ct has the following definition:

ct(TSy) = {(Ci,t, Cj,t+1) | ∃yt, yt+1 ∈ TSy : yt ∈ Ci,t ∧ yt+1 ∈ Ci,t+1}. (1)

For example, in Figure 1, the cluster transition sets of the time series TSc are:

ct(TSc) = {(Cp,1, Cu,2), (Cu,2, Cw,3)}.

Given the description of the cluster transition set, we next define a multiset M that
contains all cluster transitions for all time series TSi of the data set D:

MD =
⋃

TSi∈D
ct(TSi). (2)

Regarding Figure 1, the multiset MD is:

MD = {(Cp,1, Cs,2), (Cp,1, Cs,2), (Cp,1, Cu,2),

(Cq,1, Cu,2), (Cq,1, Cu,2), (Cr,1, Cv,2),

(Cs,2, Cw,3), (Cs,2, Cw,3), (Cu,2, Cw,3),

(Cu,2, Cx,3), (Cu,2, Cx,3), (Cv,2, Cx,3)}b.

In combination with the equation for the cluster transition set, the given multiset
description is then used to define a conformity score, which indicates how often a particular
cluster transition p occurs in all time series of a data set D:

con f ormity_score(p, MD) = MD(p). (3)

With respect to this equation, the conformity score of the cluster transition (Cp,1, Cs,2)
of the data set D presented in Figure 1 is:

con f ormity_score((Cp,1, Cs,2), MD) = MD((Cp,1, Cs,2)) = 2.

Using Equations (1)–(3), a set of anomalous transitions at for a time series TSy ∈ D is
defined as follows:

at(TSy) = {p | p ∈ ct(TSy) ∧ con f ormity_score(p, MD) ≤ σ}, (4)

where σ is a threshold for the conformity score of a single cluster transition. Thus, if the
conformity score is less than or equal to σ, then the corresponding transition is categorized
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as anomalous. Consequently, a subsequence Sy,[k,m] of a time series TSy is anomalous if
and only if:

at(Sy,[k,m]) = ct(Sy,[k,m]). (5)

According to Equations (4) and (5), the entire time series TSc of the data set D shown
in Figure 1 is anomalous due to:

at(TSc) = {(Cp,1, Cu,2), (Cu,2, Cw,3)} = ct(TSc).

Using Equation (5), anomalous subsequences of a time series TSy can be identified by
iterating over all possible subsequences of TSy. As an alternative to this approach, a set
of tuples can be derived based on the set of anomalous cluster transitions, where the first
element of each tuple indicates the beginning of an anomalous subsequence, and the second
one specifies the end of the corresponding subsequence. Given a lower number of required
iterations through a time series, this alternative is intended to optimize the performance of
the method presented in this paper. This first requires the definition of an order relation ≤:

(Ci,ta , Cj,tb) ≤ (Ck,tc , Cl,td
) :⇔ (ta ≤ tb) ∧ (tc ≤ td). (6)

Based on the presented order relation, a set of tuples can be defined with respect to a
time series TSy, where each tuple consists of two anomalous cluster transitions. The first
transition indicates the beginning of an anomalous subsequence of the time series TSy, and
the last one specifies the end of the corresponding subsequence. The formal description for
this set of anomalous transition boundaries atb is given by:

atb(TSy) = {(p, p′) |(p, p′ ∈ at(TSy))∧
(@p̃ ∈ ct(TSy) ∧ p̃ /∈ at(TSy) : p ≤ p̃ ≤ p′)∧
(@(Ci,t, Cj,t+1) ∈ at(TSy) : p′ = (Ch,t−1, Ci,t))}.

In the case of the time series TSc from Figure 1, the set of anomalous transition
boundaries for σ = 1 is:

atb(TSc) = {((Cp,1, Cu,2), (Cu,2, Cw,3))}.

Further, to obtain data point-based outlier boundaries for a time series TSy, a mapping
dpy(Ci,t, Cj,t′) = (yt, y′t) is required that maps cluster tuples to a tuple of data points based
on TSy, such that:

yt ∈ TSy ∧ yt ∈ Ci,t ∧ yt′ ∈ TSy ∧ yt′ ∈ Cj,t′ .

Finally, the outlier boundaries set ob within a time series TSy is defined as a element-
wise merge of tuples of the set of the anomalous transition boundaries, which is then
mapped to the data points of TSy:

ob(TSy) = {dpy(Cw,t, Cz,t′+1)|∀((Cw,t, Cx,t+1), (Cy,t′ , Cz,t′+1)) ∈ atb(TSy)}.

In this context, the set of outlier boundaries consists of tuples, where the first element
of each tuple marks the beginning of an anomalous subsequence, and the second one
indicates the end of that subsequence. Consequently, the outlier boundaries set of the time
series TSc = c1, c2, c3 shown in Figure 1 for σ = 1 is:

ob(TSc) = {dpc(Cp,1, Cw,3)} = {(c1, c3)}.

4. Experiments

In this section, we evaluate the method presented in this work. Since the method
for detection of outliers in time series (DOOTS (https://github.com/tatusch/ots-eval/
blob/main/doc/doots.md (accessed on 20 April 2022))) of Tatusch et al. [22] also detects
anomalous subsequences based on time series transitions between different clusters, we

https://github.com/tatusch/ots-eval/blob/main/doc/doots.md
https://github.com/tatusch/ots-eval/blob/main/doc/doots.md
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used their method for comparison with our approach. In addition, we used the identical
data sets and the same clustering method. This is intended to make the comparison of the
two methods as fair as possible. In both approaches, DBSCAN with euclidean distance was
used for timestamp-based clustering, with minPts and ε set differently for each data set
but equally for both methods. In order to identify the best cluster parameters, we made
use of the cluster over-time stability evaluation measure called CLOSE [15] and found that
these were the same as Tatusch et al. used in their study [16]. Furthermore, we used the
same thresholds for DOOTS as proposed in Tatusch et al. In order to make a meaningful
comparison with our method, we chose the conformity score threshold in a way to ensure
the results of both methods were as similar as possible. Overall, we used two real world
data sets to compare both methods.

4.1. Eikon Financial Data Set

One of the real world data sets Tatusch et al. used for the evaluation of their work
was an extract from the EIKON database. This database contains financial data from over
150,000 sources worldwide, and the information includes the previous 65 years. The extract
contained annual values from the features’ net sales and expected return for 30 (originally)
random selected companies. The values of both features were normalized by min–max-
normalization. The parameters used for the clustering by DBSCAN were ε = 0.15 and
minPts = 2.

Figure 2a shows the result of DOOTS [16] for the threshold τ = 0.6, and Figure 2b
illustrates the result of our outlier detection method for the conformity score threshold of
σ = 1. The black dashed boxes in Figure 2a mark intuitive outliers, which by definition
consist of noise, and the red boxes represent outliers found by analyzing cluster transitions
(outlier by distance). In contrast, in Figure 2b, each black dashed box highlights the
beginning of an anomalous subsequence and each red dashed box marks the remainder of
that subsequence.

The most noticeable fact when comparing the results of both methods is the dif-
ferent number of detected subsequences. While DOOTS [16] found only two anoma-
lous subsequences (SGM,[2008,2009] and SKR,[2009,2013]), our solution identified four of them
(SGM,[2008,2009], SKR,[2008,2013], STJX,[2008,2009], and SUPS,[2012,2013]). A detailed analysis of
STJX,[2008,2009] and SUPS,[2012,2013] showed that both of them had a unique cluster transi-
tion with a conformity score of one each. Since the threshold σ was set to the same value,
both subsequences were identified as anomalous by our method.

The explanation for why STJX,[2008,2009] and SUPS,[2012,2013] were not considered anoma-
lous by DOOTS [16] is more complex. In the case of UPS, neither a subsequence score nor
the best score can be calculated, due to the lack of a cluster membership of the last data
point of the time series. The inclusion of such a case requires an additional case differentia-
tion. This can be seen as a disadvantage of the method of Tatusch et al. [16]. The reason
for the missing detection of STJX,[2008,2009] was the small size of the cluster in which TJX
was located in 2008. Therefore, the calculation of the subsequence score for STJX,[2008,2009]
resulted in 0.5. Since the best score for this subsequence was one, the outlier score for it
was (1− 0.5) = 1, thus lower than the threshold τ of 0.6. From this case, the dependence of
the outlier detection result on the corresponding cluster sizes can be derived, which can be
considered as another disadvantage of the method of DOOTS [16].
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(a)

(b)

Figure 2. (a) Result of Tatusch et al. Colors: cluster memberships, red dashed boxes: outlier by dis-
tance, black dashed boxes: intuitive outliers. (b) Result of our method. Colors: cluster memberships,
red dashed boxes: outliers, black dashed boxes: preoutliers.

Most interesting with regard to the identification of UPS (2012–2013) and TJX (2008–
2009) as outliers is probably the realization that they can be explained by related events.
Unlike the companies with which UPS was clustered in 2012, UPS had to lower its expected
return in 2013. This was probably attributable to the crash of UPS Airlines Flight 1354
(https://www.bbc.com/news/world-us-canada-23698279; accessed on 25 April 2022)
14 August 2013. TJX Companies is a multinational department store corporation that in
2009 was still struggling with the consequences of the recession triggered by the economic
crisis in 2008 (https://www.bizjournals.com/denver/stories/2009/07/06/daily63.html;
accessed on 25 April 2022). For this reason, sales fell sharply, as they did for all retail
traders. The reason why TJX was identified as an outlier here was that it was the only retail
company in the data set.

4.2. Airline On-Time Performance Data Set
The other real world data set that Tatusch et al. [16] used in their publication was

called “Airline on-time performance”. It was originally created for a challenge with the
goal to predict delayed and canceled flights. Therefore, the authors included flight data on

https://www.bbc.com/news/world-us-canada-23698279
https://www.bizjournals.com/denver/stories/2009/07/06/daily63.html
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all commercial flights in the USA between October 1987 and April 2008, resulting in a total
of 120 million records. Based on this data set, Tatusch et al. [16] generated one dimensional
time series with the feature “distance”. As described in their work, they took eight days of
every month and calculated the average distance for each airline in the data set. Before the
authors clustered the created data set with DBSCAN, they normalized the distances by
the min–max normalization. The parameters for the applied clustering algorithm were
minPts = 3 and ε = 0.03.

The result of DOOTS [16] for τ = 0.4 is displayed in Figure 3a. Here, the black solid
lines represent outliers by distance, and the black dashed lines are both outliers by distance
and intuitive outliers. Our result for σ = 1 is shown in Figure 3b, where the black solid
lines mark anomalous subsequences. In both figures, the colors of the dots set at each time
point represent the cluster membership, with the red color representing noise found by
DBSCAN. The results of both methods show strong similarities regarding the detection of
anomalous subsequences, but there are also some differences. The most relevant of them
are discussed below.

(a) (b)
Figure 3. Airline on-time performance data set. (a) Outlier detection result of the method of
Tatusch et al. (b) Result of our method.

Foremost, the subsequences SA,[1,2] and SA,[3,4] of the time series marked as A in
Figure 3 were detected as anomalous by DOOTS [16], while they were not detected as such
by our method. In the context of our approach, these subsequences were not detected as
anomalous, because the number of equal cluster transitions and, therefore, the conformity
score of SA,[1,2] as well as of SA,[3,4] was higher than the threshold σ = 1. In contrast,
explaining the results of DOOTS [16] requires detailed calculations. First, the subsequence
score for SA,[1,2] is:

subseq_score(SA,[1,2]) = 3/4 = 0.75.

Given that the best score for the last cluster of SA,[1,2] is one, the outlier score for this
subsequence is:

outlier_score(SA,[1,2]) = 1− 0.75 = 0.25 < τ.

Based on this result, SA,[1,2] should not be labeled as anomalous. However, if we take
the subsequence SA,[1,3], which in addition to SA,[1,2] contains a further value at time = 3,
the subsequence score for SA,[1,3] becomes smaller compared to SA,[1,2] with:

subseq_score(SA,[1,3]) = 0.5 ∗ (0.5 + 0.1) = 0.3.

Since the best score for the corresponding cluster at time = 3 is one, the outlier score
for SA,[1,3] is:

outlier_score(SA,[1,3]) = 1− 0.3 = 0.7 > τ.
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Thus, the subsequence SA,[1,3], was marked as anomalous. The same type of calcula-
tions led to the detection of the subsequence SA,[3,5] as anomalous, which contained the not
anomalous subsequence SA,[3,4].

The detection of SA,[1,2] and SA,[3,4] by DOOTS [16] leads to two possible conclusions.
On one hand, it can be concluded that the approach of Tatusch et al. [16] considers anoma-
lous subsequences in a broader context with respect to the length of a time series than our
method, which would be an advantage of DOOTS. On the other hand, this solution leads
to subsequences that are not anomalous within their interval being detected as anomalous.
This can be seen as a disadvantage of DOOTS [16]. In contrast, our method detects only
those subsequences that exhibit suspicious behavior within their time interval. However,
a broader context regarding our detection method can be achieved by additionally consid-
ering non-anomalous subsequences that are adjacent to detected anomalous subsequences.

A more general observation is that our method detected every subsequence of length
two as anomalous if it contained one or more noisy data points. The reason for this is that
the conformity score of such sequences was one and thus smaller or equal to the chosen
threshold σ. In contrast, the solution of Tatusch et al. [16] follows a different approach.
Even if a subsequence of length two had a noisy data point, it does not mean that DOOTS
[16] would detect this subsequence as anomalous. In addition to the subsequence score,
the detection of outliers by the method of Tatusch et al. [16] also depends on the value
of the corresponding best score and whether both scores can be calculated for the given
subsequence. In summary, we can conclude that DOOTS [16] has a much more complex set
of rules than our method, whereby the results of both methods are similar.

5. Conclusions and Future Work

In this paper, we introduced a new approach for detecting outliers in multiple mul-
tivariate time series. For this purpose, we first clustered the time series data at each time
point and then calculated conformity scores for each subsequence of length two. Finally,
we determined whether the conformity scores were less than or equal to the specified
threshold and labeled them as outliers if they were.

Since we found only one alternative algorithm (called DOOTS) [16] based on a similar
idea, we compared the two in detail. The application of both methods led to similar results,
although our solution had a much simpler rule set and, therefore, required fewer calcula-
tions (the runtime estimation is provided in Section 2). On one hand, this simplified the
understanding of the origin of the outliers and, on the other hand, the better performance of
our method allows it to be used on real time data. In addition, our rule set seems to be more
consistent in contrast to DOOTS [16]. This statement is supported, among other things,
by comparing the thresholds of both methods. While for our method the same minimum
conformity score threshold was used in each dataset, the threshold set in DOOTS [16]
varied without much difference between the results of both methods. Furthermore, our
solution detected subsequences even if they ended with a noisy data point.

The most important drawback of our method is that the outlier detection result
depends highly on the result of previous clustering. This implies that a poor clustering
result would lead to a poor detection result of our method. Since the analysis of cluster
transitions is the core idea of our method, we have to rely on approaches such as CLOSE [15]
to obtain reasonable clustering results for our solution. Furthermore, while our method
can be applied to real-time data due to its performance, this requires prior clustering in
real-time with reasonable results for time series data. Here, CLOSE [15] provides good
results, but the procedure is not applicable to real-time data because of the high number of
needed computations. Given that, the most important aspect for future work is to optimize
CLOSE [15] for real-time application. In addition, the freely selectable threshold σ in our
work has a high impact on the detection result of our method. Every increment of σ leads to
a superset of detected outliers regarding the result of the previous threshold. Although in
this work we set this parameter to one for each dataset in order to obtain results that were
as similar as possible and thus comparable to DOOTS [16], the optimal value for σ can
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be determined in several ways, and each determination should depend on the dataset
in question. One way to determine the optimal σ is to count the cluster transitions that
occur, sort them in ascending order, and choose the value for σ at which the slope change is
greatest. However, the analysis of this and other possible methods is beyond the scope of
this work and should therefore be addressed in future work. Another aspect is that not
all detected anomalous subsequences may be useful in the context of given requirements.
Since this case requires further analysis, our method could be applied to multiple data sets
in which the outliers have already been labeled.
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