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Abstract: In this paper, we study the autoregressive (AR) models with Cauchy distributed innovations.
In the AR models, the response variable yt depends on previous terms and a stochastic term (the
innovation). In the classical version, the AR models are based on normal distribution which could
not capture the extreme values or asymmetric behavior of data. In this work, we consider the AR
model with Cauchy innovations, which is a heavy-tailed distribution. We derive closed forms for the
estimates of parameters of the considered model using the expectation-maximization (EM) algorithm.
The efficacy of the estimation procedure is shown on the simulated data. The comparison of the
proposed EM algorithm is shown with the maximum likelihood (ML) estimation method. Moreover,
we also discuss the joint characteristic function of the AR(1) model with Cauchy innovations, which
can also be used to estimate the parameters of the model using empirical characteristic function.

Keywords: autoregressive model; Cauchy innovations; EM algorithm

1. Introduction

Autoregressive (AR) models with stable and heavy-tailed innovations are of great
interest in time series modeling. These distributions can easily assimilate the asymmetry,
skewness, and outliers present in time series data. The Cauchy distribution is a special
case of stable distribution with undefined expected value, variance, and higher order
moments. The Cauchy distribution and its mixture has many applications in the field
of economics [1], seismology [2], biology [3], and various other fields, but only a few
studies have been conducted concerning time series models with Cauchy errors. In [4],
the maximum likelihood (ML) estimation of AR(1) model with Cauchy errors is studied.

The standard estimation techniques for the AR(p) model with Cauchy innovations,
particularly the Yule–Walker method and conditional least squares method, cannot be
used due to the infinite second order moments of the Cauchy distribution. Therefore,
it is worthwhile to study and assess the alternate estimation techniques for the AR(p)
model with Cauchy innovations. In the literature, several estimation techniques have
been proposed to estimate the parameters of AR models with infinite variance errors (see
e.g., [5–7]).

In this paper, we propose to use the EM algorithm to estimate the parameters of the
distribution and model simultaneously. It is a general iterative algorithm for model param-
eter estimation which iterates between two steps, namely the expectation step (E-step) and
the maximization step (M-step) [8]. It is an alternative to the numerical optimization of
the likelihood function which is proven to be numerically stable [9]. We also provide the
formula based on the characteristic function (CF) and empirical characteristic function
(ECF) of Cauchy distribution for AR(p) model estimation. The idea to use ECF in a time
series stable ARMA model has been discussed in [10].
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The remainder of the paper is organized as follows. In Section 2, we present a brief
overview of the Cauchy AR(p) model, followed by a discussion of estimation techniques,
namely the EM algorithm and estimation by CF and ECF. Section 3 checks the efficacy of
the estimation procedure on simulated data. We also present the comparative study, where
the proposed technique is compared with ML estimation for Cauchy innovations. Section 4
concludes the paper.

2. Cauchy Autoregressive Model

We consider the AR(p) univariate stationary time-series {Yt}, t ∈ N with Cauchy
innovations defined as

Yt =
p

∑
i=1

ρiYt−i + εt = ρTYt−1 + εt, (1)

where ρ = (ρ1, ρ2, · · · , ρp)T is a p-dimensional column vector, Yt−1 = (Yt−1, Yt−2, · · · , Yt−p)T

is a vector of p lag terms, and {εt}, t ∈ N are i.i.d. innovations distributed as Cauchy(α, γ).
The pdf of Cauchy(α, γ) [11] is

f (x; α, γ) =
γ

π

[
1

γ2 + (x− α)2

]
, γ > 0, α ∈ R, x ∈ R. (2)

The conditional distribution of Yt given the preceding dataFt−1 = (Yt−1, Yt−2, · · · , Y1)
T

is given by [4]

p(Yt|Ft−1) = f (yt − ρTyt−1; α, γ) =
γ

π

[
1

γ2 + (yt − ρTyt−1 − α)2

]
,

where yt−1 is the realization of Yt−1. In the next subsection, we propose the methods to
estimate the model parameters ρ and innovation parameters α and γ simultaneously.

2.1. Parameter Estimation Using EM Algorithm

We estimate the parameters of the AR(p) model using an EM algorithm which maxi-
mizes the likelihood function iteratively. Further, we discuss the time series {Yt} using
the characteristic function (CF) and estimation method using CF and ECF. Recently [7], the
exponential-squared estimator for AR models with heavy-tailed errors was introduced and
proven to be

√
n-consistent under some regularity conditions; similarly, the self-weighted

least absolute deviation estimation method was also studied for the infinite variance AR
model [12]. The ML estimation of AR models with Cauchy errors with intercept and with
linear trend is studied, and the AR coefficient is shown to be n3/2-consistent under some
conditions [4]. For the AR(p) model with Cauchy innovations with n samples, the log
likelihood is defined as

l(Θ) = (n− p) log(γ)− (n− p) log(π)−
n

∑
t=p+1

log(γ2 + (yt − ρTYt−1 − α)2),

where Θ =
(

α, γ, ρT
)

.



Eng. Proc. 2022, 18, 21 3 of 8

Proposition 1. Consider the AR(p) time-series model given in Equation (1) where error terms fol-
low Cauchy(α, γ). The maximum likelihood estimates of the model parameters using EM algorithm
are as follows

ρ̂T =

 n

∑
t=p+1

(yt − α)YT
t−1

s(k)t

 n

∑
t=p+1

Yt−1YT
t−1

s(k)t

−1

;

α̂ =

n

∑
t=p+1

(yt − ρTYt−1)

s(k)t

∑n
t=p+1

1
s(k)t

;

and

γ̂ =

√√√√ n− p
2 ∑n

t=p+1
1

s(k)t

,

(3)

where s(k)t = (yt − ρT(k)Yt−1 − α(k))2 + γ(k)2
.

Proof. Consider the AR(p) model

Yt = ρTYt−1 + εt, t = p + 1, 2, · · · , n,

where εt follows Cauchy distribution Cauchy(α, γ). Let (εt, Vt) for t = 1, 2, · · · , n denote the
complete data for innovations ε. The observed data εt are assumed to be from Cauchy(α, γ)
and the unobserved data Vt follow inverse gamma IG(1/2, γ2/2). A random variable
V∼IG(a, b) if the pdf is given by

fV(v; a, b) =
ba

Γ(a)
e−b/v

va+1 , a > 0, b > 0, v > 0.

We can rewrite εt as εt = Yt − ρTYt−1, for t = 1, 2, · · · , n. The stochastic relation
ε = α +

√
VZ with Z ∼ N(0, 1) i.e., standard normal and V ∼ IG(1/2, γ2/2) is used to

generate Cauchy(α, γ) distribution. Then, the conditional distribution is

f (ε = εt|V = vt) =
1√

2πvt
exp

(
− 1

2vt
(εt − α))2

)
.

Now, we need to estimate the unknown parameters Θ = (α, γ, ρT). To apply the
EM algorithm for estimation, we first find the conditional expectation of log-likelihood
of complete data (ε, V) with respect to the conditional distribution of V given ε. As the
unobserved data are assumed to be from IG(1/2, γ2/2), the posterior distribution is again
an inverse gamma i.e.,

V|ε = e, Θ ∼ IG

(
1,

(e− α)2 + γ2

2

)
.

The following conditional inverse first moment and E(log(V)|ε = e) will be used in
calculating the conditional expectation of the log-likelihood function:

E(V−1|ε = e) =
2

(e− α)2 + γ2 ,

E(log(V)|ε = e) = log((e− α)2 + γ2)− log 2 + 0.5776.
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The complete data likelihood is given by

L(Θ) =
n

∏
t=p+1

f (εt, vt) =
n

∏
t=p+1

fε|V(εt|vt) fV(vt)

=
n

∏
t=p+1

γ

2πv2
t

exp

(
− (εt − α)2 + γ2

2vt

)
.

The log likelihood function will be

l(Θ) = (n− p) log(γ)− (n− p) log(2π)− 2
n

∑
t=p+1

log(vt)−
n

∑
t=p+1

(εt − α)2 + γ2

2vt
.

Now, we will use the relation εt = Yt − ρTYt−1 in further calculations. In the first step
at kth iteration, E-step of EM algorithm, we need to compute the expected value of the
complete data log likelihood known as Q(Θ|Θ(k)), which is expressed as

Q(Θ|Θ(k)) = EV|ε,Θ(k) [log f (ε, V|Θ)|εt, Θ(k)] = EV|ε,Θ(k) [l(Θ|Θ(k))]

= (n− p) log γ− (n− p) log 2π −
n

∑
t=p+1

E(log vt|εt, Θ(k))

− γ2

2

n

∑
t=p+1

E(v−1
t |εt, Θ(k))− 1

2

n

∑
t=p+1

(εt − α)2E(v−1
t |εt, Θ(k))

= (n− p) log γ− (n− p) log 2π − (n− p) log 2 + 0.5776(n− p)−
n

∑
t=p+1

log((εt − α(k))2 + γ(k)2
)

− γ2

2

n

∑
t=p+1

1

(εt − α(k))2 + γ(k)2 −
n

∑
t=p+1

(εt − α)2

(εt − α(k))2 + γ(k)2

= (n− p) log γ− (n− p) log 2π − (n− p) log 2 + 0.5776(n− p)−
n

∑
t=p+1

log(s(k)t )

− γ2

2

n

∑
t=p+1

1

s(k)t

−
n

∑
t=p+1

(εt − α)2

s(k)t

.

where st = (yt − ρTYt−1 − α)2 + γ2. In the next M-step, we estimate the parameters
α, γ, and ρT by maximizing the Q function using the equations below:

∂Q
∂ρ

= 4
n

∑
t=p+1

(yt − ρTYt−1 − αYT
t−1)

s(k)t

,

∂Q
∂α

=
n

∑
t=p+1

(yt − ρTYt−1 − α)

s(k)t

,

∂Q
∂γ

=
n− p

γ
− 2γ

n

∑
t=p+1

1

s(k)t

.
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Solving the above equations at each iteration, we find the following closed form estimates
of the parameters at k + 1th iteration:

ρ̂T =

 n

∑
t=p+1

(yt − α)YT
t−1

s(k)t

 n

∑
t=p+1

Yt−1YT
t−1

s(k)t

−1

;

α̂ =

n

∑
t=p+1

(yt − ρTYt−1)

s(k)t

∑n
t=p+1

1
s(k)t

;

and

γ̂ =

√√√√ n− p
2 ∑n

t=p+1
1

s(k)t

,

(4)

where s(k)t = (yt − ρT(k)Yt−1 − α(k))2 + γ(k)2
.

2.2. Characteristic Function for Estimation

Thus far, we have considered the conditional distribution of Yt given the preceding
data Ft−1. Now, we include the dependency of time series {Yt} by defining the variable
dj = (yj, · · · , yj+p) for j = 1, · · · , n− p. In each variable {dj}, there are p terms the same
as adjacent variable. The distribution of {dj} will be multivariate Cauchy with dimension
r = p + 1.

The CF of each dj is c(Θ, s) = E(exp(i sTdj)) and the ECF is cn(s) = 1
n ∑

n−p
j=1 exp(i sTdj)

where s = (s1, · · · , sp+1)
T .

To estimate the parameters using CF and ECF, we make sure that the joint CF of the
AR(p) model has a closed form. In the next result, the closed form expression for the joint
CF of the AR(1) model with Cauchy innovations is given.

Proposition 2. The joint CF of stationary AR(1) model with Cauchy innovations is

c(s1, s2; Θ) = exp

iα(s1 + s2)

(
1

1− ρ

)× exp

−γ

|s2|+ |s1 + ρs2|
(

1
1− |ρ|

)
.

Proof. For stationary AR(1) model yt = ρyt−1 + εt, we can rewrite it as

yt = εt + ρεt−1 + ρ2εt−2 + ρ3εt−3 + · · · .
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Note that {εt} are i.i.d from Cauchy(α, γ) distribution, and the CF of Cauchy(α, γ)
is E(exp(i sεt)) = exp(i αs − γ|s|) [11]. Then, the joint CF of (yt, yt−1) is calculated as
follows:

c(s1, s2; Θ) = E[exp(i s1yt−1 + i s2yt)]

= E[exp(i s1(εt−1 + ρεt−2 + ρ2εt−3 + · · · )) + i s2(εt + ρεt−1 + ρ2εt−2 + · · · )]
= E[exp(i s2εt + i(s1 + s2ρ)εt−1 + iρ(s1 + ρs2)εt−2 + · · · )]
= exp(iαs2 − γ|s2|)× exp(iα(s1 + ρs2)− γ|s1 + ρs2|)
× exp(iα(ρs1 + ρ2s2)− γ|ρs1 + ρ2s2|)× · · · .

= exp(iα(s1 + s2)(1 + ρ + ρ2 + ρ3 + · · · ))
× exp(−γ(|s2|+ |s1 + ρs2|+ |ρ||s1 + ρs2|+ |ρ2||s1 + ρs2|+ · · · ))

= exp(iα(s1 + s2)

(
1

1− ρ

)
× exp(−γ(|s2|+ |s1 + ρs2|(1 + |ρ|+ |ρ2|+ · · · )))

= exp

iα(s1 + s2)

(
1

1− ρ

)× exp

−γ

|s2|+ |s1 + ρs2|
(

1
1− |ρ|

)
.

The joint CF for a higher dimension can be obtained in similar manner. Now, the
model parameters can be estimated by solving the following integral with CF and ECF as
defined in [10]: ∫

· · ·
∫

wΘ(s)(cn(s)− c(s; Θ))ds = 0. (5)

where optimal weight function

w∗Θ(s) =
1

2π

∫
· · ·

∫
exp(−i sTdj)

∂ log f (yj+p|yj, · · · , yj+p−1)

∂Θ
dyj . . . dyj+p. (6)

Remark 1. For a stationary AR(l) process {Yt} with p = l, the ECF estimator defined by
Equation (5) with optimal weight function defined in Equation (6) is a conditional ML (CML)
estimator and hence asymptotically efficient. The conditional log pdf for Cauchy distribution is:

log f (yj+p|yj, · · · , yj+p−1) = log γ− log π − log
(

γ2 + (yt − ρTYt−1 − α2)2
)

.

The proof is similar to the proof of Proposition 2.1 in [10].

3. Simulation Study

In this section, we assess the proposed model and the introduced estimation technique
using a simulated data set. We discuss the estimation procedure for the AR(2) model
with Cauchy innovations. The AR(2) model defined in (1) is simulated with ρ1 and ρ2
as model parameters. We generate 1000 trajectories, each of size N = 500 of Cauchy
innovations using the normal variance-mean mixture form ε = α +

√
VZ with Z ∼ N(0, 1),

i.e., standard normal and V ∼ IG(1/2, γ2/2). We then use the following simulation steps
to generate the Cauchy innovations:

step 1: Generate standard normal variate Z;
step 2: Generate inverse gamma random variate IG(1/2, γ2/2) with γ = 2;
step 3: Using the relation ε = α +

√
VZ, we simulate the Cauchy innovations with α = 1;

step 4: The time series data yt is generated with model parameters ρ1 = 0.5 and ρ2 = 0.3.
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The exemplary time series data plot and scatter plot of innovation terms are shown
in Figure 1. We apply the discussed EM algorithm to estimate the model parameters and
distribution parameters. The relative change in the parameters is considered to terminate
the algorithm. The following is the stopping criteria which is commonly used in literature:

max


∣∣∣∣∣α(k+1) − α(k)

α(k)

∣∣∣∣∣ ,

∣∣∣∣∣γ(k+1) − γ(k)

γ(k)

∣∣∣∣∣ ,

∣∣∣∣∣∣ρ
(k+1)
1 − ρ

(k)
1

ρ
(k)
1

∣∣∣∣∣∣ ,

∣∣∣∣∣∣ρ
(k+1)
2 − ρ

(k)
2

ρ
(k)
2

∣∣∣∣∣∣
 < 10−4. (7)

We compare the estimation results of Cauchy(α, γ) with the EM algorithm and max-
imum likelihood (ML) estimation. The ML estimates are computed using the inbuilt
function “mlcauchy” in R, which uses the exponential transform of the location parameter
and performs non-linear minimization by a Newton-type algorithm. The comparison of
the estimates of Cauchy(α, γ) are shown in boxplots in Figure 2. From the boxplots, we find
that the EM algorithm converges near to the true value of the Cauchy(α, γ) as compared to
the ML estimation. There is a possibility of achieving a better result from ML method if a
different algorithm or inbuilt function for optimization are used for estimation.

0 100 200 300 400
t

−400

−200

0

200

400

Y
t

(a)

0 100 200 300 400
t

−600

−400

−200

0

200

400

ε t

(b)

Figure 1. (a) The data plot of exemplary time series of length N = 500 and (b) the scatter plot
of the corresponding innovation terms of the AR(2) model with Cauchy innovations. The chosen
parameters of the model are ρ1 = 0.5, ρ2 = 0.3, α = 1, and γ = 2.

MLE EM

0.75

1.00

1.25

1.50

1.75

2.00

2.25

(a)

MLE EM

0.75

1.00

1.25

1.50

1.75

2.00

2.25

(b)

Figure 2. Boxplots of the estimates of the AR(2) model’s parameters with theoretical values
(a) α = 1 and (b) γ = 2 represented with blue dotted lines. The boxplots are created using 1000 trajec-
tories, each of length 500.
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4. Conclusions and Future Scope

In this work, we derive the closed form of estimates of AR model with Cauchy inno-
vations using an EM algorithm. The performance of the proposed algorithm is compared
with the ML method using simulated data. The ML estimation is found using an inbuilt
function in R. Another benefit of using the EM algorithm is that it calculates the model as
well as the innovation parameters simultaneously. It is evident from the boxplot that the
EM algorithm outperforms the ML method. Further, we discuss another approach based
on CF to estimate the AR model parameters with stable distribution. In the future, we plan
to study and compare the proposed algorithm and ECF based estimation method with the
existing techniques in [5–7] for an AR model with infinite variance. Further, the real life
phenomena can be studied using the proposed model and methods.
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