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Abstract: Ecosystem respiration (Reco) represents a major component of the global carbon cycle. An
accurate estimation of Reco dynamics is necessary for a better understanding of ecosystem–climate
interactions and the impact of climate extremes on ecosystems. This paper proposes a new data-
driven method for the estimation of the nonlinear dynamics of Reco using the method of dynamic
mode decomposition with control input (DMDc). The method is validated on the half-hourly Fluxnet
2015 data. The model is first trained on the night-time net ecosystem exchange data. The day-time
Reco values are then predicted using the obtained model with future values of a control input such
as air temperature and soil water content. To deal with unobserved drivers of Reco other than the
user control input, the method uses time-delay embedding of the history of Reco and the control
input. Results indicate that, on the one hand, the prediction accuracy of Reco dynamics using DMDc
is comparable to state-of-the-art deep learning-based methods, yet it has the advantages of being a
simple and almost hyper-parameter-free method with a low computational load. On the other hand,
the study of the impact of different control inputs on Reco dynamics showed that for most of the
studied Fluxnet sites, air temperature is a better long-term predictor of Reco, while using soil water
content as control input produced better short-term prediction accuracy.
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1. Introduction

Carbon losses from ecosystems affect climate change. Ecosystem respiration (Reco),
the sum of autotrophic and heterotrophic respiration, represents a major component of
the global carbon cycle. Accurate estimation of Reco dynamics is necessary for a better
understanding of ecosystem–climate interactions and the impact of climate extremes on
ecosystems. This paper proposes a new data-driven method for the estimation of the
nonlinear dynamics of Reco using the method of dynamic mode decomposition (DMD), an
emerging tool for the analysis of nonlinear dynamical systems.

Ecosystem respiration is typically described as an exponential function of temperature
based on the law of thermodynamics [1]. This function is defined based on certain param-
eters, such as temperature sensitivity, which are assumed to remain constant. However,
several studies have pointed to the dependence of these parameters on other drivers of
Reco [2] . Such issue is partially compensated in regression models by the use of temporal
moving windows for parameters estimation [3].

The Eddy Covariance (EC) technique is widely used to measure the net ecosystem
exchange (NEE) which is the difference between Reco, the total CO2 release due to all
respiration processes, and the gross carbon uptake by photosynthesis (GPP). The two CO2
fluxes Reco and GPP are derived from NEE by applying partitioning methods. Recently
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deep learning-based methods have been proposed for modeling Reco dynamics [4,5]
using EC measurement of night-time NEE when photosynthesis, and therefore GPP, is
assumed to be 0. These approaches provide data-driven equation-free estimates of Reco
with the flexibility to include other meteorological and biological drivers affecting Reco
during the daytime to achieve the NEE partitioning task. In spite of their improved
performance compared to state-of-the-art empirical methods, they require a sufficient
amount of training data as well as extensive tuning of the used deep networks’ hyper-
parameters. Accordingly, the trained model cannot take into account some short-term
variations in ecosystem respiration.

2. Methods

The Koopman operator [6] enables the transformation of finite-dimensional nonlin-
ear system dynamics to an infinite-dimensional linear dynamical system. Finding the
eigenfunctions of the Koopman operator, however, remains a major obstacle to its imple-
mentation. DMD is a simple numerical algorithm that approximates the Koopman operator
with a best-fit linear model that advances measurements from one time step to the next ([7],
[8]. It is an equation-free system identification method where the underlying dynamics of
the system are learned from snap-shot in time of measurement data. DMD decomposes
system dynamics into temporal modes whereby each mode represents a fixed oscillation
frequency and decay/growth rate. It has been extended to deal with dynamical systems
with exogenous control input (DMDc) [9].

In this paper, we propose a new data-driven yet physics-aware method for the dy-
namical modeling of Reco, which can serve as an NEE partitioning method. The proposed
approach is based on using DMDc in a sliding temporal window approach. The system
state Reco is represented as a linear dynamical model with an autonomous component in
addition to an exogenous component which is a function of control input. The control input
to the system can be soil or air temperature (Tair) in accordance with the thermodynamics
law or any other observed drivers such as soil water contents (SWC). Such modeling of
Reco dynamics allows to disentangle the exogenous effect of the control input, e.g., Tair,
from the autonomous dynamics of Reco, and hence allows to intervene on the control
input to study its effect on the system. To deal with unobserved drivers of Reco other than
temperature or any user control input, we make use of time-delay embedding (TDE) of
the history of the system’s state and control input. According to the Takens theory [10],
such an embedding guarantees, under certain conditions, that the system will learn the
trajectories of the original system. The TDE in DMDc has been shown to facilitate the
treatment of nonlinear systems with linear models [11]. Another advantage of using TDE
in the proposed method is that it allows for learning Reco dynamics from short data as
it compensates for using advanced measurement in time. This is relevant as it enables
ecosystem forecast taking into account short-term variations in the system dynamics.

3. Results

We used the half-hourly EC Fluxnet 2015 data [12] measured at multiple Fluxnet
sites with different vegetation types and average temperatures to investigate the impact of
different control inputs, e.g., Tair and SWC, on Reco dynamics. The model is trained on
night-time NEE which is assumed to be the ground-truth values of night-time Reco. The
day-time Reco values are then predicted using the obtained model with future values of
control input. The method is validated on Reco short-term and long-term forecast periods
with different control inputs. The obtained results indicate that: (1) The performance
of the proposed method is comparable to the recently proposed deep learning-based
NEE partitioning methods, yet it has the advantages of being a simple and almost hyper-
parameter-free method with a very low computational load. (2) The use of TDE facilitates
learning Reco dynamics from very short data, i.e., up to one night samples of NEE. (3) For
most of the studied Fluxnet sites, Tair is a better long-term predictor of Reco, while using
SWC as control input produced better short-term forecast accuracy.
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