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It is clearly a huge benefit for infrastructure monitoring, inspection, and management
when a digital twin (DT) is developed to represent a real physical infrastructure. Three-
dimensional (3D) geometric models of physical assets, particularly as-is 3D models, is
the backbone of the DT, which are used to integrate real-time information of the physical
assets and are fundamental components for modelling and simulation to predict responses
of infrastructure. In the DT concept, the digital model requires to automatically update
changes of physical infrastructure in an accurate and timely manner. Today, laser scan-
ning sensors and cameras integrated into laser scanners, drones, and other surveillance
equipment allow us to capture 3D topographic information of objects’ surfaces in a 3D
space with different level of detail and accuracy. As such, 3D point clouds representing
to surface information of infrastructure derived from these surveying tools are to be a
fundamental resource in creating 3D geometric models for DT. Automatically generating
digital models from the 3D point clouds presents many challenges due to adverse quality
and quantity of data points, massive data points, and highly complex geometries of 3D
objects and scenes [1]. Moreover, in practice, existing workflows to achieve detailed, precise
3D geometric models of physical assets are mostly based on human work, implying high
time consumption, cost, and possibility of human error. This paper proposes a framework
using both spatial information of point clouds and contextual knowledge of objects to
automatically extract point clouds of individual surfaces of objects of infrastructure (e.g.,
buildings and bridges). Contextual knowledge can include lower and upper bounds of
dimensions of the objects, and a geometric relationship with adjoined objects. The main
goal of the use of contextual knowledge is to support in estimating input parameters, to
roughly extract point clouds of interest, and to filter unrealistic objects to be recognized. By
integrating contextual knowledge into the framework, only a subset containing the point
cloud of each object of interest needs be processed to extract the surfaces, the proposed
framework can handle large bridge data sets. Once the point cloud of individual surfaces
of each structural component are available, the 3D models of the structure can be created,
or surface damage can be identified. Buildings and bridges are selected as case studies to
demonstrate the proposed framework [2,3].
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