


Abstract A Bim Approach for the Design of a 5D Model of Industrial Warehouses in the Marine Environment ⁺

Rassidatou Abbo¹, Okpwe Mbarga Richard¹, Lezin Seba Minsili^{1,*} and Mbondo Jean Marc²

- ¹ Department of Civil Engineering, National Advanced School of Engineering of Yaounde,
- P.O. Box 8390 Yaounde, Cameroon; rshirine4@gmail.com (R.A.); okrichar@gmail.com (O.M.R.)
 ² Department Head, Port Asset Management, DAME, The Port Authority of Kribi, P.O. Box 203 Kribi, Cameroon; jean.mbondo@pak.cm
- * Correspondence: seba.lezin@univ-yaounde1.cm
- + Presented at the 1st International Online Conference on Infrastructures, 7–9 June 2022; Available online: https://ioci2022.sciforum.net/.

Keywords: design; warehouses; construction; BIM model; marine environment

BIM (building information modelling) is transforming the architecture, engineering, and construction (AEC) industry all around the world. In Sub-Saharan countries, its spread is in an earlier stage, while academics are working hand in hand with the local industry for its smooth implementation. In this context, the aim of this research is to provide an approach for designing industrial warehouses subjected to marine conditions using BIM. For this purpose, and considering our context, we make use of a methodology with seven steps:

More precisely:

- Definition of BIM general requirements for this type of construction project. Here, we define the units, the language, the open standard for exchanging data, the BIM deliverables, the quality control process, and how data sharing will be performed, and adopt a Level of Development 300;
- Design of the 3D BIM architectural model. Parametric objects (footings, walls, windows, beam, column...) are used to create the model, and the software used is Autodesk Revit Architecture 2018;
- Design of thermal insulation making use of CSTB (1975), Microsoft Excel 2010, and the previous BIM architectural model;
- Design of the 3D BIM structural model using Revit 2018 Platform, Robot Structural Analysis 2018, and IFC format;
- Coordination of 3D BIM models and interference detection with the software Autodesk Navisworks Manage; all possible clashes between the different models are corrected in order to obtain a consistent 3D BIM model;

Citation: Abbo, R.; Richard, O.M.; Minsili, L.S.; Marc, M.J. A Bim Approach for the Design of a 5D Model of Industrial Warehouses in the Marine Environment. *Eng. Proc.* 2022, *17*, 29. https://doi.org/ 10.3390/engproc2022017029

Academic Editor: Ana Sánchez Rodríguez

Published: 2 May 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

- Creation of 4D BIM model by combining the schedule (created with the software Ms. Project) of the project to each BIM objects of the 3D BIM model;
- Creation of the 5D model that gives us the cost estimation of the elements built onsite and the element to be built at every step of the project (this calculation is carried out using Navisworks manage or intelligent BIM objects).

This methodology is applied for the design of a warehouse dedicated to containing cocoa or coffee products requiring a homogeneous thermo-hydroscopic setting in a marine environment of the industrial area of the deep-sea port of Kribi (Cameroon), with a surface of 2000 m² and 11.2 m height. Preliminary results show that the proposed methodology can be easily implemented with available BIM software commonly used by engineers in Cameroon. This approach makes it possible to quickly obtain a consistent 5D BIM model of the industrial building, namely a comprehensive model which integrates data related to: architecture, structure, thermal insulation, and planning of the industrial building.

Our research studies are moving forward in order to automatically generate costs related to the project using state of art approaches related to higher Degree BIM models and based on intelligent BIM objects.

Author Contributions: Conceptualization, L.S.M.; methodology, O.M.R.; software, R.A.; validation, L.S.M. and M.J.M.; formal analysis, R.A.; investigation, M.J.M.; resources, L.S.M.; data curation, O.M.R.; writing—original draft preparation, R.A.; writing—review and editing, O.M.R.; visualization, R.A.; supervision, L.S.M.; project administration, L.S.M.; funding acquisition, Ongoing procedure. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding and The APC was funded by personal expenses.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.