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Abstract: The findings of this research attempt to evaluate the electrical and compression features
of electrically conductive yarns (ECY) as well as the structure of sensor systems, such as single
jersey and double jersey knit designs, for healthcare applications and wearing technologies. The
tensile properties and electrical properties of conductive yarns were optimized basis of the findings.
Owing to the knit-tuck stitches arrangement, which gives density to the fabric, the double lacoste,
popcorn, and milano ribs were proven to have adequate compressive resilience. The developed
knitted structures kinds of sensors were noticed and may easily be applied to global smart socks
manufacture as well as other technologies.
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1. Introduction

By recognizing and responding to a sensory input, smart textiles response to the environ-
ment with various components of electronics in the form of yarns or textiles [1] integration of
various patterns and composition of woven, non-woven, and knitted structures [2].

2. Results and Discussion

The conductive yarns 280D-FDY and SPFX25070-FX were selected based on the re-
sults shown in Figure 1a, and the electrical characteristics of the conductive yarns were
seen in Figure 1b. The Kawabata evaluation system (KES FB-03) had been used to test
pressure sensors such as double lacoste, popcorn, and milano rib compression properties,
with the findings reported in Table 1. Figure 2 and Table 2 show the pressure electrical
resistance curve for an optimized knitted structure. The decrease in electrical resistance
when subjected to varying loads indicates well for the insertion of such designs into socks
for counting calories and other health-related applications in the field of e-textiles. Further-
more, the sensors utilized in health monitoring systems are extremely adaptable, allowing
for a natural interface with the human body [3].

Table 1. Compression results for optimized knitted pressure sensors.

Compression Characteristics Double Lacoste Popcorn Milano Rib

Linearity of compression (LC) 0.560 ± 0.036 0.570 ± 0.026 0.550 ± 0.050
Work of compression (WC) gf. cm/cm2 1.467 ± 0.108 1.850 ± 0.050 2.157 ± 0.137
The resilience of compression (RC) % 44.000 ± 1.375 45.557 ± 0.407 49.55 ± 0.918
Thickness at the max load (To) mm 3. 550 ± 0.050 3.490 ± 0.066 4.666 ± 0.015

Thickness at the pressure 0.5 g. f/cm2 (Tm) mm 2.447 ± 0.186 1.550 ± 0.050 1.550 ± 0.05
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Figure 1. (a) Tenacity-strain curve for conductive yarns; (b) electrical resistance (Ω) of conductive 

yarns. 
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Figure 2. Pressure-electrical resistance curve for an optimized knitted pressure sensor. 

Table 2. Electrical resistance measurement for the selected knitted structures to identify the pressure 

sensing properties. 

Sr. #. 
Pressure 

(Grams) 

Double Lacoste Re-

sistance (Ω) 
Popcorn Resistance (Ω) Milano Rib Resistance (Ω) Spacer Resistance (Ω) 

1 0 9.20 ± 0.21 9.31 ± 0.32 8.89 ± 0.39 9.40 ± 0.41 

2 25 9.06 ± 0.23 9.22 ± 0. 29 8.81 ± 0.32 9.38 ± 0.41 

3 53 8.92 ± 0.23 9.21 ± 0.22 8.80 ± 0.29 9.31 ± 0.29 

4 81 8.91 ± 0.25 9.11 ± 0.22 8.72 ± 0.31 9.29 ± 0.28 

5 131 8.89 ± 0.28 9.06 ± 0.19 8.71 ± 0.29 9.16 ± 0.31 

6 199 8.84 ± 0.22 9.01 ± 0.23 8.65 ± 0.33 9.15 ± 0.33 

7 311 8.79 ± 0.23 8.98 ± 0.28 8.59 ± 0.35 9.14 ± 0.41 

8 424 8.77 ± 0.25 8.97 ± 0.26 8.52 ± 0.41 9.11 ± 0.39 

9 540 8.75 ± 0.22 8.89 ± 0.33 8.51 ± 0.29 9.09 ± 0.36 
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Figure 1. (a) Tenacity-strain curve for conductive yarns; (b) electrical resistance (Ω) of conductive yarns.
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Figure 2. Pressure-electrical resistance curve for an optimized knitted pressure sensor.

Table 2. Electrical resistance measurement for the selected knitted structures to identify the pressure
sensing properties.

Sr. #. Pressure
(Grams)

Double Lacoste
Resistance (Ω) Popcorn Resistance (Ω) Milano Rib Resistance (Ω) Spacer Resistance (Ω)

1 0 9.20 ± 0.21 9.31 ± 0.32 8.89 ± 0.39 9.40 ± 0.41

2 25 9.06 ± 0.23 9.22 ± 0. 29 8.81 ± 0.32 9.38 ± 0.41

3 53 8.92 ± 0.23 9.21 ± 0.22 8.80 ± 0.29 9.31 ± 0.29

4 81 8.91 ± 0.25 9.11 ± 0.22 8.72 ± 0.31 9.29 ± 0.28

5 131 8.89 ± 0.28 9.06 ± 0.19 8.71 ± 0.29 9.16 ± 0.31

6 199 8.84 ± 0.22 9.01 ± 0.23 8.65 ± 0.33 9.15 ± 0.33

7 311 8.79 ± 0.23 8.98 ± 0.28 8.59 ± 0.35 9.14 ± 0.41

8 424 8.77 ± 0.25 8.97 ± 0.26 8.52 ± 0.41 9.11 ± 0.39

9 540 8.75 ± 0.22 8.89 ± 0.33 8.51 ± 0.29 9.09 ± 0.36

3. Conclusions

Based on their compressional properties, this research work sought to select/optimize
the best practicable knitted structures from both single and double jersey knitted structures.
Double lacoste and popcorn were reported to have better compressional behavior in case
of single jersey knitted structures. The only structure in a double jersey is the milano rib,
which offers a higher compressive value due to the structure design and the best pressure
sensing properties. Smart textiles are seen as the industry’s future, with numerous new
items being developed in various stages of life in response to demand [4]. Miniaturization of
health monitoring systems is progressing to manage complicated computing and efficient
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information sensing [5]. Several studies [6,7] have been done to improve the sensing
characteristics of textile constructions made from electrically conductive yarns.
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