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Abstract: This paper presents a dispenser printed electrode array on polyester/cotton fabric. The
fabrication details needed to achieve the array, including the materials and printer set-up, are reported.
The array consists of ten electrode elements for functional electrical stimulation (FES), including nine
active electrodes and one common return electrode. The minimum gap between conductive tracks
of 1 mm required for the design was achieved. The fabrication method can be used to tailor the
electrode array to fit a wide variety of healthcare applications and an individual’s requirements for
personalized healthcare.
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1. Introduction

Screen-printed dry electrodes for electrotherapy applications have been demonstrated
in previous work [1]. However, dispenser printing offers the advantage of lower cost
for custom designs compared to screen printing, since no physical screen is required for
patterning. It is a direct-write printing technique where the material structures are built
via a syringe and nozzle connected to a pneumatic pressure controller [2]. The printing
pattern is automatically controlled by the computer software according to the required
design, which makes bespoke designs feasible.

Electrodes are key components of many healthcare devices for diagnostics/monitoring
(e.g., ECG, EEG, EMG) and therapeutics (e.g., electrical muscle stimulation for assisted
living and rehabilitation). Traditional hydrogel electrodes are not suitable for long-term
use because their performance deteriorates over time due to moisture evaporation and
contamination build-up resulting from their stickiness. A dry electrode made from Fabink
E-0002 paste was used in textile printing in previous work for healthcare applications [3].
However, the pot-life of Fabink E-0002 is only around 20 min, which is often not sufficient
for the fabrication process. The short pot-life of the ink occurs since the viscosity of the paste
increases due to crosslinking of the electrode components after mixing. This also creates
a challenge during dispenser printing because the syringe pressure needs to be adjusted
as the ink’s viscosity increases during printing. This paper introduces and describes the
application of a new dry electrode paste called Fabink E-0003. The pot-life of Fabink E-0003
is around three hours.

This work presents the fabrication process and parameters of an electrode array on a
textile by dispenser printing. The strategy for interface printing and printing characteriza-
tion is discussed.
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2. Methods and Materials
2.1. Dispenser Printer

Dispenser printing uses air pressure to dispense inks out of a nozzle onto a substrate.
The Fisnar F7300NV 3 Axis dispenser printer used in this study is shown in Figure 1a.
The nozzle can move in the X and Z directions relative to the substrate, and Y direction
movement can be achieved by the substrate moving relative to the nozzle. The movement
of both the nozzle and the substrate is controlled by a computer system. The movement
instructions for the printing of each layer are controlled by the following parameters:
printing speed, line gap and nozzle height above the substrate. Line gap is the distance
between two parallel lines of a meander printing trace as shown in Figure 1b. The nozzle can
be changed manually to the appropriate size determined by the required print resolution;
available nozzle diameters range from 0.15 mm to 1.60 mm. The air pressure is set by the
pressure controller depending on the viscosity of the material to be dispensed with a higher
viscosity requiring a higher pressure.
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Figure 1. (a) The Fisnar F7300NV 3 Axis dispenser printer. (b) An example of meander printing to
achieve a square. Line gap is the distance between two parallel lines.

The electrode array for functional electrical stimulation (FES) consists of ten electrode
elements comprising nine active electrodes and one common return electrode. As in
previous work [4], the sample consists of four functional layers, as shown in Figure 2a–d.
Figure 2e shows the final top view of the sample after depositing four layers. The minimum
distance between two silver tracks is designed to be 1 mm, which is also the width of the
printed conductive tracks.
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2.2. Materials

The woven textile substrate is polyester/cotton A1656 white supplied by Whaleys
Bradford Ltd. (Bradford, UK). The three functional pastes used in this study are listed in
Table 1. They were supplied by Smart Fabric Inks Ltd. (Southampton, UK). The interface,
silver and encapsulation material are the same as those used in previous work [1]. However,
the electrode paste changed to Fabink E-0003.

Table 1. Properties and curing conditions of pastes.

Pastes Functionality Curing Conditions

Fabink UV-IF-1004 Interface and encapsulation to create a smooth
surface and electrical insulation UV light, 60 s

Fabink TC-C4007 Silver ink for printing flexible conductive layer 100 ◦C, 30 min
Fabink E-0003 Carbon paste for printing electrodes 120 ◦C, 30 min

3. Fabrication Processes

The dispenser printed electrode array consists of four functional layers as shown in
Figure 2. The set-up of the printer for each layer is optimized, and the optimum parameters
are listed in Table 2.

Table 2. Dispenser printer parameters for each layer.

Functional Layer Layer Number Nozzle Size
(mm)

Pressure
(k Pa)

Line Gap
(mm)

Printing Speed
(mm/s)

Height
(mm)

Interface

1 1.6 15 1 35 0.05
2 1.6 15 1 35 0.05
3 0.41 30 0.2 35 0.05
4 0.41 30 0.2 35 0.5
5 0.41 60 0.2 35 1

Silver 6 0.41 20 0.2 15 0.2

Encapsulation 7 1.6 15 1 35 0.1

Carbon electrode 8 1.6 450–550 1 2 1.3

(1) Interface

The function of the interface is to fill any gaps in the textile (e.g., between yarns) and
create a smooth and flat surface before printing the subsequent layers. As listed in Table 2,
layers 1 and 2 are printed to fill the gaps between textile yarns and create a continuous
layer on the textile. Due to the liquid absorption property of the textile, the paste spreads
on the bare textile before it is cured. A longer processing time before curing leads to more
bleeding. The line gap of the first two prints is set at 1 mm using a nozzle size of 1.6 mm.
This saves printing time compared to when a 0.2 mm line gap is used with a smaller nozzle
size (0.41 mm) in later layers. Therefore, the paste bleeding is reduced as the printing time
is shorter.

After the first two interface layers are printed, the ink forms an uneven surface on the
textile. Layer 3 is printed to smooth the surface by filling in the areas of lower height in the
uneven surface. A 0.05 mm height is set between the nozzle and the surface peak. Layers 4
and 5 are printed to achieve the additional filling of the lower height areas, resulting in a
flat surface. A line gap of 0.2 mm was used for layers 3 to 5. Dividing one wide printing
track into five narrower tracks can create a less-curved surface, as illustrated in Figure 3.
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Figure 3. The effect of line gap on printing result. (a) The cross-section of a printed track achieved by
one wide print. (b) The cross-section of a printed track achieved by five narrower prints.

The interface layer was formed using Fabink IF-UV-1004. UV curing was applied after
each print by exposing the sample to a 400 W mercury (Hg) bulb in a UV cabinet supplied
by UV Light Technology Ltd. (Birmingham, UK). The UV curing time was 60 s.

(2) Silver

The silver layer is printed to form the conductive tracks for interconnections and the
conductive pads for the carbon electrodes. The line gap is set as 0.2 mm, which means
that a silver track of 1 mm width is achieved by five parallel line prints. Dividing one line
into five prints can also reduce the frequency of open circuits leading to improved sample
yield and quality. The conductive layer was formed using Fabink TC-C4007. The paste was
cured in a box oven at 100 ◦C for 30 min.

(3) Encapsulation

The encapsulation layer is printed to protect the conductive tracks and provide electri-
cal insulation. The encapsulation layer was formed using Fabink IF-UV-1004 and cured as
for the interface.

(4) Carbon electrode array

Carbon electrodes, which form the contact layer to the skin, are printed on top of the
conductive pads. The electrode paste was cured in a box oven at 120 ◦C for 30 min resulting
in an electrode layer with a thickness of 1.3 mm.

4. Results and Discussion

The samples after printing each of the functional layers are shown in Figure 4. Figure 5a
is an SEM image showing the cross-section of the conductive layer printed on the textile.
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Figure 5. (a) SEM images showing the cross section of one silver line sandwiched between the
interface and encapsulation. (b) The SEM image of the textile cross section.

Compared with the bare uncoated textile, which is shown in Figure 5b, the surface
roughness is decreased by the interface layer. The curved surface caused by surface tension
can be observed in the surface of the encapsulation layer in Figure 5a. In contrast, the
interface layer and silver layer are flat with a less-curved surface.

5. Conclusions

This paper has achieved an all dispenser printed electrode array structure on textile.
Dispenser printing is a direct write process, which allows the design of the array to be
adjusted to achieve bespoke one-off designs tailored to suit an individual’s needs. The
minimum gap between conductive tracks of 1 mm required in the design was achieved.
The process details and materials used are presented. The array consists of ten electrode
elements for functional electrical stimulation (FES), including nine active electrodes and one
common return electrode. Future work will test the electrode array for muscle stimulation.
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