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Abstract: Because of its benefits, an induction machine is used in a variety of applications. The
machine’s robustness is one of its benefits. Generally, mechanical faults cause torque oscillations,
eccentricity, and vibration, which affect the stator current value and magnetic field distribution. As
a result, early warning of mechanical failures helps to prevent damage to the induction system or
sudden stopping. In this sense, the accuracy of techniques in detecting rolling bearing failure is
investigated in this article. The first method focused on stator current analysis and the second on
stray flux signature analysis. The aim of this research is to compare the success of the stray flux
technique and the stator current analysis in detecting inner raceway faults. In addition, this research
suggests a novel method for determining the relationship between two signals based on a transfer
function estimate and magnitude-squared coherence between current and flux. Experimental tests
were realized in a laboratory to artificially create the bearing damage. After that, the analysis focused
on characteristic harmonics related to the different harmonics.

Keywords: induction motors; rolling element bearing faults; motor current signature analysis; stray
flux signature analysis; transfer function estimate; magnitude-squared coherence

1. Introduction

Induction motors (IMs) are commonly used in a variety of industrial uses. However,
like all rotating electrical machines (REMs), they are vulnerable to a variety of faults.
Monitoring is a crucial step in avoiding a sudden halt. Stator faults, rotor faults, bearing
faults, and other faults are the most common fault classifications in IMs. The factor-bearing
fault has a large proportion of fault distributions in IMs, reaching 41% [1]. Air-gap variance,
torque oscillation, stator current over current, extreme loading, elevated losses, and others
are some of the symptoms of this fault [2,3]. As a result, one of the most commonly used
types of bearings in the mechanical method of REMs is the rolling element bearing (REB).
Early detection of REB faults is essential in order to avoid a variety of damages, including
economic losses, and they necessitate special supervision.

The fast Fourier transform (FFT) tool is one of the many that confirm a high level
of efficiency in a stationary regime [4,5]. Researchers have recently used this method
to study a variety of signals, including vibration, stator current, electromagnetic torque,
and magnetic field signal [6–9]. Several faults have been detected using techniques such
as artificial neural network (ANN), wavelet transform (WT), fuzzy logic (FL), Hilbert
transform (HT), empirical mode decomposition (EMD), motor vibration signature analysis
(MVSA), and motor current signature analysis (MCSA) [10–13]. Many scholars in the field
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of REM diagnosis have recently been interested in the stray flux signature analysis (SFSA)
technique [14–16].

This paper examines the feasibility of using stray flux to detect REB faults in IM
type. The main objective of this technique is to detect the REB fault. The IM used in the
experimental test bench presented in Figure 1 has the following characteristics: P = 4 kW,
p = 1. The fundamental frequency of the stator currents is fs = 50 Hz.
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Figure 1. Test bench dedicated to REB fault in IM.

2. REB Characteristic for Experimental Test

It is known that there are four elements of the REB. According to these elements, we
can cite four REB faults:

1. Ball fault (BF);
2. Inner raceway fault (IRF);
3. Outer race fault (ORF);
4. Cage fault (CF)

The REB type used in this study has the serial number 6206. It contains ball num-
bers (Nb = 9) and diameter (Db = 9.5 mm). The dimensions of the REB of serial number
6206 are: outer diameter (Do = 62 mm), inner diameter (Di = 30 mm), and thickness value
(Dth = 16 mm) (see Figure 2). The inner raceway fault (IRF) was artificially created to study
the IM behavior.
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Figure 2. Schematic description of REB type.

3. Motor Current Signature Analysis (MCSA)

According to [17], the characteristic frequencies of the vibration signal for REBs, which
has ball numbers between 6 and 12, can be approximated by:

fOR = 0.4Nb × k× fr (1)
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f IR = 0.6Nb × k× fr (2)

where fr is the mechanical rotor frequency given by:

fr =
(1− s)

p
· fs (3)

where s is the rotor slip.
Under REB faults, the spectral stator present includes the following additional har-

monic components:
f±

charact−OR,IR,cage,ball
= |ν fs ± k fc| (4)

where fc = fOR,IR,cage,ball is the characteristic frequencies that can be found in the vibration
signal spectrum, ν is the order of the stator time harmonics (ν = 1, 3, 5, etc.), and k is
an integer.

Therefore, the characteristic frequencies that can be found in the stator current spec-
trum are:

f±
charact−IR−ν,k

= |ν fs ± k f IR| (5)

The IM runs with a nominal load (i.e., s = 3.66). In this case and according to
Equation (3), the fr value is 48.167 Hz. Table 1 summarizes some harmonics in the sta-
tor current spectrum caused by the IRF. It provides us a visual representation of the fault’s
several harmonics.

Table 1. Summary of some characteristic harmonics under IRF (s = 0.0366).

Formulas of Characteristic Harmonics in the
Stator Current Spectrum Theoretical Values (Hz)

| fs + f IR| 310.1018
| fs − f IR| 210.1018
| fs + 2 f IR| 570.2036
| fs − 2 f IR| 470.2036
|3 fs − f IR| 110.1018
|5 fs − 2 f IR| 270.2036

The specific frequencies of the mixed rotor eccentricity fault are given by:

fmix−ecc = | fs ± k fr| (6)

where k = 1, 2, 3, . . .
It is known that these frequencies exist even in a healthy IM.
We can define the rotor slot harmonics (RSHs) given by:

fRSHs =

[
k.Nrb(1− s)

p
± ν

]
· fs (7)

where k is an integer. We can also define the saturation frequencies (fsat) expressed as
follows [18]:

fsat = 3k fs (8)

where k is an odd number.
In all figures below, we will consider that the blue color represents the healthy state of

an IM, and the red color represents the inner raceway fault.
Figure 3 presents characteristic frequencies of the IRF with low amplitude: 10, 110.3,

210.1, 270.4 Hz, and so forth. These frequencies verify Equation (5).
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Figure 3. Stator current spectrum in healthy case (a,c) and IRF case (b,d) for 0–120 Hz and 100–220 Hz.

The frequency components of the mixed eccentricity fault are: fs + fr and fs + 3fr.
According to Figure 3, they have the values: 98.3 and 194.9 Hz respectively.

In the frequency band 250–550 Hz, we found the characteristic frequency which has
the formula: 5fs − 2fIR. In addition, the Lower Principal Slot Harmonics (L-PSH) and the
Upper Principal Slot Harmonics (U-PSH) have the values 1195 and 1395 Hz respectively.
They are clearly presented in the stator current spectra.

The distinction states of an IM under an IRF can be seen in the stator current spectra
as we can see that the IRF frequencies have low amplitude.

4. Stray Flux Signature Analysis (SFSA)

For the study of rolling bearing faults, the SFSA is proposed as an alternative inves-
tigative technique [19]. It is based on the measurement of stray flux in various locations
around the REM.

In Figures 4 and 5, the evolution of many types of amplitude, such as s × fs and 3s × fs
wavelength, can be seen and detected (s = 0.0366). In addition to s × fs and 3s × fs, the
black arrow color represents new harmonics that tend to be inspired by the IRF.
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Figure 4. Flux spectrum: signal in healthy case (a) and IRF case (b) for 0–100 Hz.
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Figure 5. Flux spectrum: signal in healthy case (a) and IRF case (b).

In reality, rotor electrical and mechanical faults, as well as REB faults, have no effect on
stator currents; however, they cause rotor eccentricity, which can deform the IM magnetic
field’s symmetry. The IRF can be detected in different range frequencies based on the flux
spectra, which is determined using the coil sensors.

The analysis of SFSA-FFT allows us to find additional harmonics that appear at the
same frequency given by Equation (5), which are fs − fIR and fs + 2fIR.

These values correspond, respectively, at 209.8 H with Amp = 5.29× 10−10 V and 569.4 Hz
with Amp = 5.5 × 10−10 V. This confirms the results found in Table 1 (fIR = 210.1018 Hz and
fs + fIR = 570.2036 Hz). In addition, other harmonics due to the mixed eccentricity of the rotor
clearly appeared as fs + fr = 98.13 Hz, fs + 2fr = 146.3 Hz, fs + 3fr = 194.3 Hz, and so forth.

It is interesting to note that these new frequencies are the same ones that were discov-
ered in the stator current spectra. When one is the representation of the other, this verifies
the relationship between current and flux (see Figure 6).
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Under the pole of the IM, which is equal to 1 (p = 1) when sfs = fs − fr, we can denote
the overlap between the frequencies sfs and fs − fr. Table 2 shows the amplitude evolutions
of certain fs + kfr frequencies (3).

Table 2. Amplitude evolution of mixed eccentricity harmonics.

fs ± kfr
Amp. Healthy IM

(V)
Amp. Faulty IM (IRF)

(V)

fs + fr 2.728 × 10−10 8.547 × 10−10

fs + 2fr 5.271 × 10−9 1.576 × 10−9

fs + 3fr 1.317 × 10−9 7.401 × 10−10

Finally, the SFSA-FFT study demonstrated the sensitivity of this technique in detecting
the IRF. Furthermore, the amplitude variance of specific flux harmonics is related to current
variations, as well as the appearance of certain new harmonics.

5. Transfer Function Estimate Analysis (TFEA)

The proposed method for system identification using a frequency analysis approach
is briefly described below, followed by a detailed presentation of the theory. This method
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starts by finding a rough estimate of the relationship between signals (transfer function).
This estimate is then mapped to a magnitude frequency representation. Information that
is a physical realization of the system is retained, while information believed to be due to
noise is discarded [20].

Txy = tfestimate(x,y) finds a transfer function estimate (TF-estimate), and the input
signal vector x (current or flux) and the output signal vector y (current or flux) are given to
Txy. The lengths of the vectors x and y must be equal. The linear, time-invariant transfer
function Txy models the relationship between input x and output y. The quotient of the
cross power spectral density (Pyx) of x and y and the power spectral density (Pxx) of x is the
transition function.

Txy( f ) =
Pyx( f )
Pxx( f )

(9)

If x is real, tfestimate only estimates the transfer function at positive frequencies; in
this case, Txy is a column vector with lengths of nfft/2 + 1 for nfft even and (nfft + 1)/2
for nfft odd. Tfestimate calculates the transition function for both positive and negative
frequencies if x or y is complex, and Txy has length nfft [21].

This part will try to discuss the transfer function for the following two cases:

- Healthy IM: input (flux) and output (current).
- Faulty IM: input (flux) and output (current).

5.1. TF-Estimate for Healthy IM

The transfer function between flux and current for a healthy IM is shown in Figure 7.
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If x is real, tfestimate only estimates the transfer function at positive frequencies; in 
this case, Txy is a column vector with lengths of nfft/2 + 1 for nfft even and (nfft + 1)/2 for 
nfft odd. Tfestimate calculates the transition function for both positive and negative fre-
quencies if x or y is complex, and Txy has length nfft [21]. 

This part will try to discuss the transfer function for the following two cases: 
- Healthy IM: input (flux) and output (current). 
- Faulty IM: input (flux) and output (current). 

5.1. TF-Estimate for Healthy IM 
The transfer function between flux and current for a healthy IM is shown in Figure 7. 
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Figure 7. Transfer function estimate under different frequency bands (healthy IM).

Figure 7 shows the transfer function between two states of the IM. This information
can help us to have a decision on the state of the induction machine. In addition, this
information is considered as a new data which can exploit it for another analysis.

5.2. TF-Estimate for Faulty IM

The results that present the tfestimate between flux and current for a faulty IM is
presented in Figure 8.
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Figure 8. Transfer function estimate under different frequency bands (faulty IM).

The figures above show the transfer function between two signals. These signals
can indicate very specific shapes for each fault. The exploitation of the transfer functions
obtained can lead us to have a final decision on the state of the induction machine.

6. Mean-Squared Coherence Analysis (MSCA)

Carter and al. [22] developed the magnitude-squared coherence (mscohere) function,
which used the weighted overlapped segmentation fast Fourier transform (FFT) approach.

Using Welch’s averaged modified periodogram form, Cxy = mscohere(x,y) finds the
magnitude squared coherence estimate, Cxy, of the input signals, x and y. The magnitude
squared coherence approximation is a frequency function with values ranging from 0 to 1,
and it shows how well x relates to y at each frequency. The magnitude squared coherence
of x and y is a function of their power spectral densities, Pxx(f ) and Pyy(f ), as well as their
cross power spectral densities, Pxy(f ):

Txy( f ) =
Pyx( f )
Pxx( f )

(10)

The lengths of x and y must be equal. Mscohere returns a one-sided coherence
approximation for real x and y. It returns a two-sided approximation for complex x or
y [23].

Therefore, this technique can guide us to check the similarity between the spectra.
This allows us to find the frequency zone affected by the fault.

It is important to put the principle of consistency between the signals studied as follows:

- Mscohere close to 1: The two signals have the same spectral content (similar).
- Mscohere close to 0: The two signals do not have the same spectral content.

Based on this strategy, we can easily define the area or frequency band where the new
harmonics exist.

6.1. MS-Cohere for Healthy and Faulty IM (Currents)

First, we compared the current signals for a healthy and a faulty IM. According to
Figures 9 and 10, the evolution of mscohere is clear. For different frequency bands between
0 and 5 kHz, the similarity of the frequencies corresponds to the similarity studied in the
analysis of the current and the flux. The values of mscohere direct us directly to the affected
frequency band.
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Figure 9. Magnitude-squared coherence of currents under different frequency bands (healthy and
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It is clear that in certain frequency bands, the signals have the same spectral content.
This indicates that this information can be used to analyze the affected bands.

6.2. MS-Cohere for Healthy and Faulty IM (Flux)

The results that compare two flux signals under a healthy and a faulty IM can be
presented in Figure 10.

The evolution of the value of mscohere is between 0 and 1; the affected frequency
band is clearly defined.

The advantages of this new proposal are to have a significant signal which can help us
to detect the fault.

It is clear that in certain frequency bands, the signals have the same spectral content.
In addition, all values close to 1 indicate the similarity in spectral content between the two
signals. This information can help us to have a decision on the state of the induction machine.

7. Conclusions

The use of MCSA-FFT and SFSA-FFT to detect rolling element bearing faults in an IM
is compared in this paper.

In summary, the MCSA-FFT analysis did not reveal any significant amplitude variation
of mixed eccentricity or specific IRF frequencies in the stator current spectrum.

Stray flux signature analysis sensitive to the REB gave good information on the IRF.
The use of SFSA-FFT in combination with at least one of the conventional techniques can
be an advantageous method for increasing the reliability of the diagnosis.
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The proposal of tfestimate in the diagnosis field of rotating electrical machines opens
the door to have a relationship between signals. On the other hand, the transfer function
can give important information on the behavior of the signals used.

We introduce a new indicator based on mscohere, which aims at characterizing a
specific frequency band of the characteristic frequencies. This feature allows us to directly
analyze the affected band frequency.
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