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Abstract: A fuel injection system in a diesel engine has different processes that affect the complete
burning of the fuel in the combustion chamber. These include the primary and secondary breakups
of liquid fuel droplets and evaporation. In the present paper, evaporation of two different diesel
fuels has been modelled numerically. Evaporation of n-heptane and n-decane is governed by the
conservation equations of mass, energy, momentum, and species transport. Results have been plotted
by varying the droplet diameter and temperature. It was observed that droplet size, temperature of
droplets, and ambient temperature have notable effect on the evaporation time of diesel fuel droplets
in the engine cylinder.

Keywords: droplet evaporation; RANS; turbulence; diesel fuel; combustion; numerical analysis

1. Introduction

Automotive industries aim to enhance the efficiency and power output of engines
whilst remaining within the range of imposed standard emission principles, which are
becoming more strict and rigorous day by day [1]. Evaporation modelling of diesel fuel
droplets was started by Landis and Mills [2], followed by Law [3]. Fuel is injected in the
form of spray from a nozzle hole at a temperature higher than its saturation temperature.
In this way, the fuel becomes superheated and its temperature rises above the critical
value [4,5]. During the evaporation process, the gas phase is governed by the Eulerian
approach, while droplet trajectories are traced in a Lagrangian frame [6]. In the present
work, conservation equations of energy, mass, momentum, and species have been coupled
and numerically solved to model the overall evaporation of two different diesel fuels. Evap-
oration of fuel droplets present in the engine cylinder starts from the surface diffusion [7].
Droplets are injected into the engine cylinder by creating a discrete phase injection. There
are different types of injections that can applied. In this work, a single injection was used to
inject the liquid fuel into the chamber [8–12]. Unsteady particle tracking was done through
the DPM in the continuous phase. Liquid particles were injected in the form of spray from
a hole that dispersed in the continuous phase. Particle trajectories were also observed in the
continuous phase at a high temperature and pressure in the Lagrangian frame of reference.

2. Numerical Modelling

The presented model was applied to govern the evaporation of droplets of n-heptane
and n-decane fuels in Ansys Fluent. The DPM was applied to solve the discrete phase, i.e.,
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fuel droplets entering into the continuous phase present in the combustion chamber. The
presented model was applied to the engine specifications available in [13].

3. Model Validation

The droplet evaporation model presented above was implemented in the Ansys Fluent;
obtained numerical results were compared with the vaporization experiments by Chauveau
et al. [8] as shown in Figure 1. The numerical results of the presented model were also
compared with the evaporation of model of Abramzon and Sirignano [9] and additionally
with the earlier work in [12,13].
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Figure 1. Comparison of model for n-decane droplet vaporization with experiment of Chauveau et al.
and numerical results for AS-1989 at 623 K.

4. Results and Discussion

In the following section, results for n-decane and n-heptane fuel droplets are presented
under different ambient conditions. Normalized droplet diameters have been plotted using
D-square law against the normalized time.

4.1. Case 1 Fuel: n-Decane

From Figure 2, we can clearly see that the n-decane droplets of 10 microns in diameter
evaporated completely within a short period of time at a high ambient temperature of
973 K compared to the lower ambient temperatures of 623 K and 823 K. Similarly, in
Figure 3, vaporization of n-decane droplets of 20 micron in diameter has been plotted, once
again playing the same trend. Droplets of the same size evaporated more quickly at high
temperatures. As the temperature increases, vaporization time decreases and vice versa.
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In Figures 4 and 5, increases in droplet temperature have been plotted. Droplets evap-
orated and disappeared within a short period of time at high ambient temperatures, while
lower ambient temperatures caused droplets to take more time to evaporate completely.
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4.2. Case 2 Fuel: n-Heptane

In Figures 6 and 7, vaporization results for n-heptane fuel droplets are presented.
In this section, droplets sized 10 and 20 microns were considered. It was observed that
droplets of smaller size evaporated within a short time compared to droplets of larger sizes.
Ambient temperature also affects the evaporation of diesel fuel droplets. At a temperature
of 973 K, the droplet lifetime was much shorter than at a temperature of 623 K. Also, it
was observed that the evaporation time of n-heptane fuel droplets was lower than that of
n-decane.
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In Figure 6, decrease in the diameter of n-heptane fuel droplets 10 microns in size have
been plotted using the D2-law against the normalized time. It is obvious that at a lower
temperature of 623 K, droplet life is higher than at the temperatures of 823 and 973 K. For
the temperature of 623 K, the droplet residence time is greater than at the temperatures of
823 K and 973 K. In Figure 7, the evaporation of 20-micron droplets has been plotted against
the normalized time. In this figure, it can be clearly seen that by increasing the droplet
size, the evaporation time of droplets also increased. In Figure 7, the regression rate of
20-micron droplets has been plotted at three different ambient temperatures. Evaporation
time at high ambient temperatures is low and vice versa. In Figures 8 and 9, temperature
profiles of 10- and 20-micron droplets have been plotted against the normalized time. The
same trend can be observed across the different ambient temperatures.
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5. Conclusions 
Our results show that droplet with a large diameter take more time to evaporate 

completely compared to the smaller ones. Small droplets evaporate more quickly due to 
a shorter heat up period than for the larger ones. Droplets of the same size behave differ-
ently at different ambient temperatures. The droplet evaporation time for a high temper-
ature is smaller than for a low temperature. Further temperature profiles of droplets plot-
ted against the injection time shows that small droplets evaporate quickly by absorbing 
the temperature quickly.  
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5. Conclusions

Our results show that droplet with a large diameter take more time to evaporate
completely compared to the smaller ones. Small droplets evaporate more quickly due to a
shorter heat up period than for the larger ones. Droplets of the same size behave differently
at different ambient temperatures. The droplet evaporation time for a high temperature
is smaller than for a low temperature. Further temperature profiles of droplets plotted
against the injection time shows that small droplets evaporate quickly by absorbing the
temperature quickly.
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