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Abstract: A simultaneous localization and mapping (SLAM) algorithm allows a mobile robot or
a driverless car to determine its location in an unknown and dynamic environment where it is
placed, and simultaneously allows it to build a consistent map of that environment. Driverless cars
are becoming an emerging reality from science fiction, but there is still too much required for the
development of technological breakthroughs for their control, guidance, safety, and health related
issues. One existing problem which is required to be addressed is SLAM of driverless car in GPS
denied-areas, i.e., congested urban areas with large buildings where GPS signals are weak as a result
of congested infrastructure. Due to poor reception of GPS signals in these areas, there is an immense
need to localize and route driverless car using onboard sensory modalities, e.g., LIDAR, RADAR, etc.,
without being dependent on GPS information for its navigation and control. The driverless car SLAM
using LIDAR and RADAR involves costly sensors, which appears to be a limitation of this approach.
To overcome these limitations, in this article we propose a visual information-based SLAM (vSLAM)
algorithm for GPS-denied areas using a cheap video camera. As a front-end process, features-based
monocular visual odometry (VO) on grayscale input image frames is performed. Random Sample
Consensus (RANSAC) refinement and global pose estimation is performed as a back-end process.
The results obtained from the proposed approach demonstrate 95% accuracy with a maximum mean
error of 4.98.

Keywords: localization; mapping; visual odometry; pose estimation

1. Introduction

Simultaneous localization and mapping (SLAM) is a problem in which a mobile robot
or driverless car is placed in an unknown environment, and has to determine its location
and simultaneously build a consistent map. All previous approaches are computationally
expensive and memory-space hungry, which limits them to develop a dynamic map for a
limited area.

A technique based on Symmetries and Perturbation (SP) mapping was applied to
solve the problem of estimating a vehicle’s current location and forming a map, but it
failed when a robot navigated through some previously visited places [1]. In [2], Monte
Carlo localization was used to counter for the global location approximation problem. A
vision-based approach was used to detect and track the location of dynamic objects, but it
worked inefficiently in cases with less sensory information [3]. For navigation in very large
areas, a map merging technique for multi-robot SLAM was applied in conjunction with
reinforcement learning [4]. The geometric features of the environment were tracked using
ultrasonic sensors, but this approach had high computational complexity [5]. Landmark
based navigation was used along with a feature extraction algorithm, but it was computa-
tionally insufficient [6]. A SLAM problem was also addressed with an unscented Kalman

Eng. Proc. 2021, 12, 49. https://doi.org/10.3390/engproc2021012049 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2021012049
https://doi.org/10.3390/engproc2021012049
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0002-4682-0085
https://doi.org/10.3390/engproc2021012049
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2021012049?type=check_update&version=1


Eng. Proc. 2021, 12, 49 2 of 5

filter to solve the problems of computational complexity and memory constraints [7]. A
technique based on adaptive place networks was used to enable a robot to navigate robustly,
but this approach was not efficient [8].

To overcome these limitations, in this article we developed a monocular vision-based
SLAM algorithm for GPS-denied locations. With a monocular SLAM approach, a single
camera was used as it is more computationally efficient, cost effective, and less memory
hungry. The main advantages of monocular visual SLAM are the low cost and it is easy to
implement [9].

2. Methods

Image sequences captured from different congested environments by a monocular
camera, mounted at the top of a car, provide visual information to perform vSLAM by visual
odometry in four steps, i.e., features detection, features tracking, RANSAC refinement,
and global pose estimation. As corners are the most salient part of any object, corners are
chosen as invariant features in images and detected using Features from an Accelerated
Segment Test (FAST) detector. The detected features are tracked by applying Sparse Optical
Flow (SOF) using the Kanade–Lucas (KL) method. Flow vectors are formed by determining
a new positions (u,v) of tracked points in the present frame using the KL method.

An essential matrix is determined by using epipolar geometry, which contains rotation
and translation information. The epipolar constraint used in this technique is yT

2 Ey1 = 0.
Here, y1 and y2 are homogenous normalized image coordinates. The results of features
tracking are not perfect and may have a great deal of incorrect correspondence; therefore,
Nister’s 5-point algorithm [10] is employed with RANSAC to find an essential matrix. The
intrinsic camera parameters (focal length and optical center) are used to obtain the camera
matrix. In the next step, a pose is estimated by finding camera rotation and translation by
using an estimated essential matrix and the consistent feature points in two consecutive
images. The essential matrix is defined as E = [t]× R. Here, R is the rotation matrix and
t is the translation matrix, and [t]× is the matrix illustration of a cross product with t. It
adopts a chirality check to find relative camera rotation and translation and the inliers
which permit that check are returned.

An estimated essential matrix, E, can be decomposed using Single Value Decompo-
sition (SVD) as illustrated in Equation (1) and then utilizing the constraints to find the
translation and rotation matrices by using Equations (2) and (3):

E = UΣVT (1)

[t]× = UWΣUT (2)

R = UW−1VT (3)

For a given E, there are four possible poses: [R1,t], [R1,−t], [R2,t], and [R2,−t]. The
chirality check recovers the pose by findings those 3D triangulated points which have
positive depth. The global pose is estimated by using the ground truth information of the
trajectory. It is achieved by finding the Euclidean distance between the previous ground
truth pose and the current ground truth pose for every current frame and then multiplying
the recovered pose with its estimated global pose. As a final step, a map is constructed by
concatenating the estimated poses, which are both rotational poses and translational poses
as given in Equations (4) and (5).

tpos = tpos + tRpos ∗ scale (4)

Rpos = RRpos (5)

The rotational and translational poses are initialized with zero, and for every next
frame translation and rotation matrices are obtained which contain the information of
rotational and translational distance covered by the vehicle from previous frame to the



Eng. Proc. 2021, 12, 49 3 of 5

next frame and the location of vehicle in that frame. For every frame, the rotational and
translational matrices (pose) are updated and concatenated to develop the map.

3. Results

The experiments were performed in outdoor congested urban areas with large build-
ings in the surroundings of the road, and to collect the dataset the input was taken from a
camera. All experiments conducted in this article for the evaluation of proposed SLAM
algorithm KITTI grayscale datasets [11], containing 4540 image sequences, were used. As
the first process the corner features were detected from the surroundings. The parameters
of feature detection algorithm were set such that it provided approximately 4000 features
from a single image, as shown in Figure 1a. The features detection step was carried out
for all the images present in the dataset and features were detected according to the envi-
ronment. These features were tracked based on detected points from the next frame, and
motion vectors were drawn by the optical flow method on image frames with colorful lines.
The tracking results for the first and the second frames are shown in Figure 1b.

Figure 1. (a) Detected features in an image frame; (b) motion vectors of tracked features.

The poses that were obtained from global pose estimation are (x,y) coordinates of esti-
mated location of a vehicle. The corresponding ground truth poses with (x,y) coordinates
from the KITTI dataset were used to compare the estimated vehicle poses and ground truth
poses for the first 200 frames of the KITTI dataset, as shown in Figure 2a. The estimated
poses are depicted with blue dots and the ground truth is represented with red triangles.
In addition, the trajectory of the vehicle by concatenating global estimated poses relative to
ground truth poses are compared and shown in Figure 2b. In this paper, eight different
datasets were used to obtain simulation results of vSLAM. The map was constructed using
500 image frames from each of the eight datasets.

Figure 2. (a) Ground truth and estimated poses for first 200 frames; (b) estimated and ground truth
trajectory.
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There is a small scale drift error between ground truth and global estimated poses at
certain locations in maps. Poses were concatenated to build the map, due to which very
small errors that were present in every global estimated pose accumulated, resulting in
scale drift. The result of RMS error plots for dataset 00 trajectory are shown in Figure 3a,
and mean RMS errors for all eight datasets are shown in Figure 3b. It can be seen that the
maximum mean error obtained was 4.98 in the case of dataset 07. This amount of error is
negligible, as SLAM is a run-time process so small amounts of drift can be ignored. As a
result of the proposed SLAM algorithm, both localization and mapping simultaneously are
realized for a driverless car in congested urban environment.

Figure 3. (a) Root mean square error plot for 00 dataset; (b) root mean square error for 8 datasets.

4. Conclusions

In this article, we proposed a vSLAM algorithm for driverless car navigation in
GPS-denied areas. The localization was performed using visual odometry, in which fast
corners as features were detected from a grayscale image and then these features were
tracked in successive frames using an optical flow method. The motion of a driverless
car was estimated by finding the essential matrix and then a local pose was recovered by
finding rotation and translation matrices and by using the essential matrix. The maximum
encountered mean rms error was 4.98 due to scale drift. However, as SLAM is a real-time
process this error can be ignored. Visual odometry with a cheap monocular camera offered
a cheaper and mechanically easier method for motion estimation.

Data Availability Statement: The data used in this article is a publicly available data from this source;
http://www.cvlibs.net/datasets/kitti/raw_data.php (accessed on 1 September 2021).

Conflicts of Interest: The authors declare no conflict of interest.
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