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Abstract: The quick, simultaneous movements of both eyes in the same direction is called a saccade,
and the process of developing an internal model for the eyes’ movement-control based on visual
stimuli is called saccade learning. All humans use this type of eye motion to bring salient objects
to the foveal locations of the retina, even if the objects are located randomly in the surrounding
environment. To begin with, infants are not able to perform this type of eye motion, but sensory
information motivates them to start learning saccadic behavior. In this paper, a sensory prediction-
error-based intrinsically motivated model is proposed for learning saccadic eye movements, and this
approach is more consistent with biological systems for saccade learning. Predicted Coding/Biased
Competition using Divisive Input Modulation (PC/BC-DIM) network is used for saccade learning
using sensory prediction errors. The quantification of sensory prediction errors provides an intrinsic
reward. A simulated humanoid agent, iCub, is used to assess and quantify the performance of the
proposed model. The performance metrics used for this purpose are percentage mean post-saccadic
distance and standard deviation. The mean post-saccadic distance for the proposed model was less
than 1◦, which is biologically plausible.

Keywords: PC/BC-DIM; LWPR algorithm; sensory prediction-error; intrinsic motivation; saccade;
eye movements; neural networks; biological plausibility; iCub simulator

1. Introduction

The human visual system’s method of learning behavior effectively demonstrates the
importance of saccade learning. Inspired by human saccadic eye movements, an algorithm
has been developed that shows 92% efficiency during different experimental tests [1]. All
humans use saccades to get the most salient information at foveal locations. The best
naturally occurring example of saccade learning derives from newly born infants. To begin
with, infants are not able to perform this type of motion, but sensory information motivates
them towards learning. During this time, they spend a certain period in the learning
phase predicting sensory error information without performing eye movements; then they
become able to perform such kinds of motion. It is a common biological phenomenon that
sensory prediction errors are used as an intrinsic motivation factor for saccade learning.
Therefore, sensory prediction errors play a key role in intrinsic motivation, which is the best
choice for training the artificial network in an intrinsically motivated manner. This idea was
first introduced by Marco Mirolli et al. in [1]. In essence, in sensory prediction-error-based
intrinsic motivation, error magnitude is used as an intrinsic motivation factor [2]. In this
research, such intrinsic motivation is used to train the artificial visual neural network. The
majority of this work has been related to action-based intrinsic motivation, not sensory-
based motivation [3]. The PC/BC-DIM eye control model, for instance, was developed for
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both saccadic and vergence tasks, and the intrinsic motivation factor completely dependent
on the success of both saccadic and vergence task behaviors. This idea was also not
proposed according to biological saccade learning. Similarly, there were many other
problems related to coordination that needed biological attention when the robot tried
to reach the objects through visual feedback. These problems have been solved by using
Locally Weighted Projection Regression (LWPR) algorithm in the past, but this algorithm
does not work under the sensory-based prediction-error intrinsic motivation principle [4].
In short, most of the work that has been done in the past used action-based information
as an intrinsic motivation factor. However, in order to make the humanoid robot more
biological plausible, in this research only sensory prediction information is used as an
intrinsic motivation to perform the saccade. The PC/BC-DIM neural network is used in
this research for saccade learning. The proposed architecture was tested using a humanoid
robot iCub simulator.

2. Method
2.1. The PC/BC-DIM Neural Network

The PC/BC-DIM neural network is used in this research. It is, in essence, a version
of Predictive Coding (PC) [5], implemented through Divisive Input Modulation (DIM) [6].
The network architecture mainly consists of two types of major functional layers. The
learning of these layers can change the behavior of the network. In this network, three
types of weights are used: learned feedforward weights, feedback weights, and pooling
weights for any unique head-centric location. The PC/BC-DIM neural network consists of
three types of neuron populations. The behavior of these neurons is calculated by using the
following three equations:

r = Vy (1)

e = x� (ε2 + r) (2)

y← (ε1 + y)⊗We (3)

2.2. Inputs Encoding Method

An input image and retinal window are generated. The input image then transforms
into two-dimensional matrix form for the purpose of MATLAB encoding and simulation.
This encoded image is then placed in the form of color at the generated retina window.
The input encoding section consists of three sections: eye-centered encoding, eye position
encoding, and input patterns for PC/BC network training. In the eye-centered encod-
ing process, the two-dimensional neurons that are generated with the help of Gaussian
populations are uniformly presented at evenly spaced Cartesian space. These Gaussian
populations are produced with the help of the following given function:

Gi (x, y) = Gmax exp(
(x− ai)

2 + (y− bi)
2

2σ2 ) for i = 1, 2, 3 (4)

After distributing the Gaussian populations uniformly at a specific location of the
retina, they are then multiplied with a binary image. The activity of each Gaussian is
calculated, then each Gaussian activity is summed up inside the receptive retina filters at
each location, and the obtained values are normalized by their maximum value after each
summation. The output information is then encoded in terms of retinal response. The eye
position encoding process consists of pan and tilt neuron information. In this proposed
model the pan and tilt neuron information of both eyes is encoded separately by using
one-dimensional Gaussian populations.

2.3. Network Training Procedure

The PC/BC network is trained locally by using eye-centered information and randomly
selected eye-position signal information for one eye (left or right) at a time. The basis
function and pooling neuron weights are learned locally. This pair of learned weights
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is used for the activation of both local network layers. These local layers of the network
are trained separately, as a result of which the computational cost increases. The sensory
prediction error information of the neurons is used as an intrinsic motivation reward in
this research. The network training process will start if the sensory prediction error value is
above 1◦.

2.4. Network Testing Procedure

If the sensory prediction error value is less than 1◦, then saccadic motor commands
are computed to perform the saccade. The computational cost that is required to learn all
objects is too high in this experiment; 100,000 iterations are required to learn the maximum
number of objects.

3. Results

The experimental results are obtained by using PC/BC-DIM network with the hu-
manoid robot iCub simulator. MATLAB is also used here for simulation purposes. The
humanoid robot iCub simulator is used here in a form whose body and head are kept fixed
for learning random object head-centric locations, with only the eyes being able to move
around a specific range (where the pan range was from −20◦ to +20◦ and the tilt range
from −12◦ to +12◦ along with step size 1). The pan and tilt signal information of both eyes
are encoded through one-dimensional Gaussian populations where each Gaussian peak
difference is 4 and sigma 2. The iCub eyes’ position control signals are issued by using
low-level IPosition control. The stimulus is produced at the retina and is used to calculate
the retinal response. The shield is also placed in front of the iCub eyes at a specific distance
to neglect the surrounding environment and to get the high-intensity image of the visual
object. The retinal plane is populated with a Cartesian population of 121 receptive fields
with σ = 5 pixels. The peak difference between two receptive fields along both directions is
set at 11 pixels. The iCub simulator was trained through a visual object that looks like a box
(that has the same values for all dimension parameters equal to 0.038) which is randomly
placed at almost all head-centric locations as shown in Figure 1. The object locations are set
in Cartesian space from 0.14 to −0.07 along the x-axis and 1.041 to 0.831 along the y-axis
with the difference of 0.015 between object centers, while the distance along the z-axis
was kept constant at 0.5. The sensory prediction-error value of the neurons is used as an
intrinsic motivation reward. The intrinsic motivation for learning will be low when the
sensory prediction error value is below 1◦ and it will be high when this value is above 1◦.
This is experimentally proved in this research. When learning motivation is low, then eye
motor commands are calculated to perform the saccadic task.

Network Accuracy

The chances of performing a saccade are greatest at low sensory prediction-error
values. After performing the saccade test, the distance of the object from the foveal location
in the retinal plane is measured as post-saccadic distance. The percentage mean value and
standard deviation (SD) of post-saccadic distance are used for different foveal receptive
fields. At the same time, the mean value and SD of the sensory prediction-error value
are computed at those patterns where the saccade is performed successfully. The trend
of percentage mean post-saccadic distance with a change in sensory prediction error is
shown in Figure 2. Shuhei Takano et al. in [7] presented a relationship between standard
deviation of saccadic error and strength of suppression. To obtain the SNo-blank values, the
model is fitted to the displacement detection sensitivity data. The parameters of the model
were fixed to the values obtained by fitting them with average data from all observers,
excluding SNo-blank. Each dot represents the observer’s data, while the line represents the
linear regression line.
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Figure 1. Humanoid robot iCub simulator’s saccadic eye movements with reference to learnt mo-
tor commands. (a) represents the object location at retina of both eyes before saccadic movements; 
(b) shows object retinal view of both eyes before saccadic movements; (c) shows saccadic move-
ments of eyes by learnt motor. (d) shows saccadic retinal view of eyes by learnt motor after sac-
cade. 

Network Accuracy 
The chances of performing a saccade are greatest at low sensory prediction-error val-

ues. After performing the saccade test, the distance of the object from the foveal location 
in the retinal plane is measured as post-saccadic distance. The percentage mean value and 
standard deviation (SD) of post-saccadic distance are used for different foveal receptive 
fields. At the same time, the mean value and SD of the sensory prediction-error value are 
computed at those patterns where the saccade is performed successfully. The trend of 
percentage mean post-saccadic distance with a change in sensory prediction error is 
shown in Figure 2. Shuhei Takano et al. in [7] presented a relationship between standard 
deviation of saccadic error and strength of suppression. To obtain the SNo-blank values, the 
model is fitted to the displacement detection sensitivity data. The parameters of the model 
were fixed to the values obtained by fitting them with average data from all observers, 
excluding SNo-blank. Each dot represents the observer’s data, while the line represents the 
linear regression line. 

Figure 1. Humanoid robot iCub simulator’s saccadic eye movements with reference to learnt motor
commands. (a) represents the object location at retina of both eyes before saccadic movements;
(b) shows object retinal view of both eyes before saccadic movements; (c) shows saccadic movements
of eyes by learnt motor. (d) shows saccadic retinal view of eyes by learnt motor after saccade.
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Figure 2. Saccade accuracy. (a) represents the mean post saccadic distance error of described 
model; (b) shows relationship with standard deviation of saccadic error. 

4. Conclusions 
In this paper, we proposed a prediction-error-based saccade learning using PC/BC-

DIM neural network as a core substrate. The proposed saccade learning approach outper-
formed the state-of-the-art saccade learning approach and yielded biologically plausible 
saccade accuracy of less than 1°. 
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Figure 2. Saccade accuracy. (a) represents the mean post saccadic distance error of described model;
(b) shows relationship with standard deviation of saccadic error.

4. Conclusions

In this paper, we proposed a prediction-error-based saccade learning using PC/BC-
DIM neural network as a core substrate. The proposed saccade learning approach outper-
formed the state-of-the-art saccade learning approach and yielded biologically plausible
saccade accuracy of less than 1◦.
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