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Abstract: Quadcopters are finding their place in everything from transportation, delivery, hospitals,
and to homes in almost every part of daily life. In places where human intervention for quadcopter
flight control is impossible, it becomes necessary to equip drones with intelligent autopilot systems
so that they can make decisions on their own. All previous reinforcement learning (RL)-based
efforts for quadcopter flight control in complex, dynamic, and unstructured environments remained
unsuccessful during the training phase in avoiding the trend of catastrophic failures by naturally
unstable quadcopters. In this work, we propose a complementary approach for quadcopter flight
control using prediction error as an effective control policy reward in the sensory space instead of
rewards from unstable action spaces alike in conventional RL approaches. The proposed predictive
coding biased competition using divisive input modulation (PC/BC-DIM) neural network learns
prediction error-based flight control policy without physically actuating quadcopter propellers, which
ensures its safety during training. The proposed network learned flight control policy without any
physical flights, which reduced the training time to almost zero. The simulation results showed that
the trained agent reached the destination accurately. For 20 quadcopter flight trails, the average path
deviation from the ground truth was 1.495 and the root mean square (RMS) of the goal reached 1.708.

Keywords: quadcopter; reinforcement learning; flight control; autonomous

1. Introduction

The increasing usage of modern flying machines is revolutionizing human life. One
prime example of these machines is the quadcopter. The autonomous navigation and
control of a quadcopter is an existing challenge that still requires significant efforts. Now,
artificial intelligence (AI) is spreading wildly in every field, so it is not meaningless to men-
tion that AI machines bring dramatic changes in the autonomous control of a quadcopter.
All the state-of-the-art reinforcement learning (RL) quadcopter navigation and control
techniques have failed to avoid catastrophic failure by naturally unstable quadcopters
during the training phase in complex, dynamic, and unstructured environments. Another
limitation associated with these RL-based training approaches is their reliance on action
space reward, which is practically impossible without circumventing physical damage to
the quadcopter. Using a proportional integral differential (PID) controller for the control of
quadcopter does not allow to deal with external harsh environments [1]. Greatwood [2]
combined two different techniques in two stages for two different jobs. RL works for node
detection so that it can move to find a destination and model predictive control (MPC)
operates to avoid obstacles. The experiment was successful, but the results be more appre-
ciable if the nodes were defined using the RL technique. Zhang [3] and his team also used
MPC along with RL in the framework of policy search. MPC was used to generate data
which were then used to train a deep neural network that directly controls the rotor speed
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using raw data. Mareef [4] used an online self-tunable fuzzy inference system to control
the flight of a quadcopter. A fuzzy inference system is used to minimize cost function and
follow a path trajectory. However, Yang et al. are not the only one who used two loops;
Richard [5] suggested to use RL for the sake of altitude control of a unoccupied flying
vehicle (UFV) during flight. They controlled the altitude via the inner loop using a PID
controller and the outer loop was responsible for the intelligent flight control system trained
using state-of-the-art of RL algorithms, trust region policy optimization, proximal policy
optimization, and deep deterministic gradient policy; though it was only in a simulation
test. In this paper, we propose a novel sensory space reward-based quadcopter navigation
and control learning approach. The proposed approach uses predictive coding/biased
competition using divisive input modulation (PC/BC-DIM) [6] neural network as a core
component. The PC/BC-DIM neural network uses the prediction error computed from
the input sensory information as a reward for quadcopter training, which circumvents the
limitations of conventional RL approaches.

2. Methodology

The architecture of the PC/BC-DIM neural network is shown in Figure 1. It can be
considered as a cycle that starts by generating reconstruction neurons from prediction
neurons on the basis of error neurons taken from inputs, as shown in Figure 1.

Eng. Proc. 2021, 12, 47 2 of 5 
 

 

generate data which were then used to train a deep neural network that directly controls 
the rotor speed using raw data. Mareef [4] used an online self-tunable fuzzy inference 
system to control the flight of a quadcopter. A fuzzy inference system is used to minimize 
cost function and follow a path trajectory. However, Yang et al. are not the only one who 
used two loops; Richard [5] suggested to use RL for the sake of altitude control of a unoc-
cupied flying vehicle (UFV) during flight. They controlled the altitude via the inner loop 
using a PID controller and the outer loop was responsible for the intelligent flight control 
system trained using state-of-the-art of RL algorithms, trust region policy optimization, 
proximal policy optimization, and deep deterministic gradient policy; though it was only 
in a simulation test. In this paper, we propose a novel sensory space reward-based quad-
copter navigation and control learning approach. The proposed approach uses predictive 
coding/biased competition using divisive input modulation (PC/BC-DIM) [6] neural net-
work as a core component. The PC/BC-DIM neural network uses the prediction error com-
puted from the input sensory information as a reward for quadcopter training, which cir-
cumvents the limitations of conventional RL approaches. 

2. Methodology 
The architecture of the PC/BC-DIM neural network is shown in Figure 1. It can be 

considered as a cycle that starts by generating reconstruction neurons from prediction 
neurons on the basis of error neurons taken from inputs, as shown in Figure 1. 

 
Figure 1. Predictive coding/biased competition using divisive input modulation (PC/BC-DIM) net-
work. 

The figure shows how the encoded input is compared to find an error on the basis of 
the error neurons that are calculated that generate synaptic weights (W). This weight, in 
combination with error neurons, make the prediction neurons. Finally, the prediction neu-
ron is multiplied by the V matrix to make reconstruction neurons. This is a loop for limited 
iterations. The equations represented by the blocks are as follows (Equations (1)–(3)). 𝑟 𝑉𝑦 (1)𝑒 𝜀/ 𝑥 𝑟  (2)𝑦 𝜀 𝑦 /𝑊𝑒 (3)

Here, r is reconstruction neuron, V is a transpose of weight matrix W, y is the predic-
tion neuron, x is the encoded input, e stands for error and epsilon is a constant term intro-
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Figure 1. Predictive coding/biased competition using divisive input modulation (PC/BC-DIM)
network.

The figure shows how the encoded input is compared to find an error on the basis of
the error neurons that are calculated that generate synaptic weights (W). This weight, in
combination with error neurons, make the prediction neurons. Finally, the prediction neuron
is multiplied by the V matrix to make reconstruction neurons. This is a loop for limited
iterations. The equations represented by the blocks are as follows (Equations (1)–(3)).

r = Vy (1)

e = ε/(x + r) (2)

y = (ε + y)/We (3)

Here, r is reconstruction neuron, V is a transpose of weight matrix W, y is the prediction
neuron, x is the encoded input, e stands for error and epsilon is a constant term introduced
to reduce the chances of zero error. Reconstruction neurons are a major part of this PC/BC-
DIM network to control the quadcopter. The whole research work is on the laminar flow of
two different systems. The first one is the data acquisition part or say training that encodes
a specific range of the aircraft principal axis, i.e., pitch and roll and then the navigation
phase works as the main controller of the quadcopter, as shown in Figure 2.
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2.1. Training

The training phase acquires predefined data as a set of ranges of roll and pitch distur-
bances. These disturbances are the prime movers for any aircraft. Each value is encoded and
the set is saved as a fixed-weight matrix. This matrix is then fed into the network. The working
of the training phase can be understood by following a simple algorithm (Algorithm 1).

Algorithm 1. Training

1. distribute aircraft principal axis and maximum distance
2. for iterations in range of size (distribution)
3. encode attribute (pitch or roll)
4. concatenate attributes in a vector
5. arrange in weight matrix

Figure 2 shows that raw data are encoded in a Gaussian format. This encoded value is
arranged in a matrix. This matrix serves as a synaptic weight for the PC/BC-DIM network.

2.2. Navigation

In the navigation phase, the distance between the quadcopter and the goal is measured
via point distance formulae (Equations (4) and (5)):

xdistance = xgoal − xaircra f t (4)

ydistance = ygoal − yaircra f t (5)

First of all, the exact distance between the quadcopter and the goal location is mea-
sured. The distance is encoded and works as an input for the PC/BC-DIM network. The
network iterates 150 times and the resulting reconstruction neurons are decoded to extract
the exact roll/pitch disturbance that moves the quadcopter. This decoded value is fed to
the PID controller. This controller generates direct actuator commands to adjust the rpm
of connected motors. This change in the angular velocity of motors gives the requested
thrust and roll necessary to move the aircraft. Once the motor commands are generated,
they move the quadcopter and eventually the distance is measured again. If the distance is
in the specific range of the goal, brakes are applied and the quadcopter stops. Algorithm 2
can help to understand the phase better.
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Algorithm 2. Navigation

1. while distance 6= 0:
2. read GPS and gyro sensors
3. distance = goal GPS-current GPS reading
4. encode distance
5. PC/BC-DIM← distance
6. reconstruction neurons← PC/BC-DIM
7. disturbances← decoded reconstruction neurons
8. PID← disturbances

3. Results

Twenty successful simulation experiments for random test goals were performed with
the help of open-source software, “Webots 2021” (Cyberbotics Ltd., Lausanne, Switzerland).
DJI Mavic 2 Pro (DJI, Shenzhen, China) (the used quadcopter) can operate smoothly with a
pitch of two units and roll of one unit. Crossing this threshold will make quadcopter unstable.
This pitch and roll was distributed into small steps, equal to the steps of the maximum
distance. Each value of the dataset is encoded and arranged into a vector form. Thus, we get
the vector of one specific value. The next value is encoded and concatenated to the previous
one, generating a huge synaptic weight matrix, as explained in the training phase. Next the
navigation phase that utilizes the synaptic weights in the PC/BC-DIM network occurs and
later generates the specific command according to the need. As the navigation phase starts, it
measures the distance from the goal and then encodes it. This encoded distance later acts as
an input for the network. This input executes the network that generates the reconstruction
neurons. Firstly, the pitch and roll parts from the whole reconstruction neuron are separated
and then decoded to get the disturbance value to feed the PID controller. The PID controller
generates motor commands to move the quadcopter in the desired direction. The proposed
reward-lessness method from action space was successfully tested and satisfactory results
were obtained, proving the correctness of the method. The quadcopter successfully took off
from ground level and moved to the defined 3D goal location by maintaining its stability
and robustness. It precisely reached the goal location and started hovering. For the sake of
showing results, a location of (5, 1, 2) is assumed (Figure 3). Altitude is assumed as a z-axis
and is 1 unit. Twenty successful experiments proved the average of difference between the x
coordinate of the quadcopter and the ground truth was l.02 and that of the y coordinate of
the quadcopter to the ground truth was 0.347. The root mean square error value from the
ground truth of aircraft was 1.09.
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Figure 3. Simulation results.

It can be clearly seen that the quadcopter is at the desired location in a minimal
amount of time. The best part of this method is that the quadcopter can go beyond the
training limits.
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4. Conclusions

This paper presents a novel prediction error-based quadcopter navigation control
approach using the PC/BC-DIM neural network. The proposed approach overcame the
limits of old RL techniques and had an accuracy of RMS error of 1.09.
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