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Abstract: The miscoordination and malfunctioning of directional overcurrent relays (DOCR) may
occur due to a significant change in the fault current level (FCL) and a change in the network topology,
from a radial to ring topology, caused by renewable energy resource-based distributed generation
(RES-DG). In this paper, a hybrid time–current–voltage (TCV)-based protection scheme is proposed
to eliminate the DOCR miscoordination and to reduce the overall operation time of DOCRs. The
DOCR coordination problem is solved with alpha Harris Hawks optimization (α-HHO). Detailed
numerical studies are carried out, and to show the performance of the proposed scheme, the results
are compared with the existing protection schemes in the recent literature.
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1. Introduction

RES-DGs are becoming extensively integrated into conventional distribution networks.
This is due to the developments in smart grid technologies and the environmentally
friendly nature of RES-DGs [1]. Aside from the benefits, RES-DGs also create technical
complexities from the perspective of operation and protection. Overcurrent relays (OCRs)
can miscoordinate or malfunction, resulting in an interruption in the power supply system,
or failures in the power infrastructure [2]. Researchers have proposed numerous strategies
to deal with the protection issues [3–5].

In this paper, the efficiency of HHO, used in [6], is improved based on the performance
of α-HHO, and the OCR-TCC is modified by including the fault voltage.

2. Methodology
2.1. Harris Hawks Optimization

Harris Hawks optimization (HHO) [6] comprises exploration and exploitation phases.
HH can be divided into four categories based on their performance, i.e., α, β, δ, and ω.
These HH has more knowledge about prey than other predators.

During the exploration phase, the HH can take positions based on the chance of attack
(â′). If â′ is <0.5, the HH can take random positions. Mathematically, this is given by
Equation (1), as follows:

P(t+1) = Pbest(t) − Pavg(t) − r1[LL + r2(UL− LL)] (1)

Eng. Proc. 2021, 12, 26. https://doi.org/10.3390/engproc2021012026 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2021012026
https://doi.org/10.3390/engproc2021012026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0001-7846-1761
https://orcid.org/0000-0002-6319-3255
https://doi.org/10.3390/engproc2021012026
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2021012026?type=check_update&version=1


Eng. Proc. 2021, 12, 26 2 of 5

On the other hand, for a chance of attack greater than 0.5, the HH take positions in
collaboration with each other. During this, the HH position is updated by Equation (2),
as follows:

P(t+1) = Prand(t) − r3

∣∣∣Prand(t) − 2× r4 × P(t)
∣∣∣ (2)

The HH transfer from exploration to exploitation when the escape energy of the prey
is less than one. The escape energy of the prey is calculated as follows:

E = 2× E0 × (1− t
tmax

) (3)

In the exploitation phase, the HH have four attacking strategies, based on the escape
energy E and the escape probability (r) of the prey. These are given in Table 1.

Table 1. Attacking strategies during exploitation phase.

Soft Seige (SS)

Soft Siege with
Progressive
Rapid Dives

(SSPRD)

Hard Siege (HS)

Hard Siege with
Progressive
Rapid Dive
(HSPRD)

Escape
Energy (E) E ≥ 0.5 E ≥ 0.5 E < 0.5 E < 0.5

Escape
Probability (r) r ≥ 0.5 r < 0.5 r ≥ 0.5 r < 0.5

During SS, SSPRD, HS, and HSPRD, the positions are updated using Equations (4)–(8),
respectively.

P(t+1) = ∆P(t) − E
∣∣∣J × Pbest(t) − P(t)

∣∣∣∴ ∆P(t) = Pbest(t) − P(t), J = 2(1− r5) (4)

P(t+1) =

{
C i f Fit(c) < P(t)
R i f Fit(R) < P(t)

∴ C = P− E
∣∣∣J × Pbest(t) − P(t)

∣∣∣, R = C + S× LF(D) (5)

P(t+1) = Pbest(t) − E
∣∣∣∆P(t)

∣∣∣ (6)

P(t+1) =

{
C i f Fit(c) < P(t)
R i f Fit(R) < P(t)

∴ C = Pbest(t) − E
∣∣∣J × Pbest(t) − Pm(t)

∣∣∣, Pm(t) =
1
N

N

∑
j=1

Xi(t) (7)

2.2. α-Harris Hawks Optimization

The best HH is named α-HH. It can be supposed that the position vector of this HH
is Pbest. Similarly, the position vectors of the second and third best HHs are defined as
Pbest − 1 and Pbest − 2, respectively, depending upon the performance efficiency of the new
position vector Pnew from the total number of HH. Therefore, the new position vector P(n),
obtained by the selection–mutation of ith hawks, can be calculated as follows:

Pi(m) = Pi(n) + 2 ∗ (1− t/tmax) ∗ (2 ∗ r− 1)(2 ∗ Pbest − (Pbest − 1 + Pbest − 2) + (2 ∗ r− 1)(Pbest − Pi(n)) (8)

For the next generation, the position vectors Pi(t+1) can be calculated by the selective process
given in Equation (9), and, for prey, as in Equation (10).

Pi(t+1) =

{
Pi(m) f (Pi(m)) < f (Pi(n))

Pi(n) f (Pi(m)

)
≥ f (Pi(n)

) (9)

Pprey =

{
Pi(m) f (Pi(m)) < f (Pprey)

Pi(n) f (Pi(n))< f (Pprey

) (10)
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2.3. Hybrid Time–Current Voltage Characteristics

The conventional OCR TCC is based on the fault current only. Its characteristic
equation is as follows:

t = TDS

 A(
I

IP

)B
− 1

+ C

 (11)

where t is the operation time of the relay, I is the fault current, A denotes the constant for
relay TCCs, and B denotes the inverse time type. The conventional TCC is modified by
including the effect of fault voltage [7], which has a modulating effect on the TCC and
reduces the relay operation time drastically. The modified TCC is given as follows:

t = TDS

 A(
I

IP

)B
− 1

+ C

( 1

e1−Vf

)K
(12)

where Vf is the fault voltage measured at the relay point and K is the relay constant.
The objective function here is to minimize the overall relay operation time and eliminate
miscoordination among the relays.

3. Results and Disscussion

The performance of the proposed scheme is evaluated on the standard IEEE-8 bus
system, which is modified with the integration of two wind farms (WFs) at bus three and
six. As we will compare the results with the HHO used in [6], the same system as used
in [6] is used here. The one-line diagram of the IEEE-8 bus system is shown in Figure 1.
The three-phase bolted faults are simulated at the mid-point of each line. There is a total of
seven faults, represented as F1–F7. The system is protected with 14 DOCRs and there is
a total of 20 primary/backup relay pairs. The coordination time interval (CTI) is kept as
0.3 s. The lower and upper limits for TDS are 0.05 and 1.1, whereas, for Ip, these are kept
as 1.1*Iload and 1.5*Iload. The objective functions given is to minimize total relay time and
is evaluated with HHO [6], and proposed α-HHO with DOCR-TCV. For both algorithms,
the population size is 30 and the maximum iterations are 500. The relay settings obtained
with HHO and α-HHO are reflected in Table 2. The operating time of the primary/backup
relays of each pair is shown in Table 3. The overall operating time for the relays with HHO
is 67.9 s, whereas, with α-HHO, it is 25.63 s, which is 62.25% less than HHO. Additionally,
no CTI violation is recorded, which shows the better performance of α-HHO as compared
to conventional HHO. Figure 2 reflects the convergence graph for both HHO and α-HHO.
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Figure 2. Convergence graph with HHO [6] and α-HHO. 

Table 2. Optimal relay settings obtained with HHO and α-HHO. 

Relay 
HHO[6] Proposed α-HHO 

Relay 
HHO[6] Proposed α-HHO 

TMS Ip (kA) TMS Ip (kA) TMS Ip (kA) TMS Ip (kA) 
1 0.672 0.120 0.670 0.151 8 0.840 0.125 0.707 0.157 
2 0.641 0.189 0.710 0.234 9 0.678 0.135 0.843 0.172 
3 0.103 0.144 0.381 0.180 10 0.412 0.092 0.846 0.113 
4 0.851 0.207 0.075 0.254 11 0.682 0.155 0.903 0.190 
5 0.681 0.145 0.838 0.182 12 0.873 0.140 0.079 0.176 
6 0.858 0.130 0.943 0.161 13 0.877 0.144 0.739 0.179 
7 0.518 0.162 0.866 0.202 14 0.663 0.191 0.648 0.240 

Table 3. Primary/backup relay operation time for all pairs obtained using HHO and α-HHO. 
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4 2 1 1.552 2.628 0.304 1.014 14 6 5 1.664 2.064 0.556 0.915 
5 2 7 1.552 2.366 0.301 1.121 15 6 14 1.664 2.220 0.551 1.129 
6 9 10 1.278 1.582 0.195 0.739 16 13 8 1.359 1.667 0.617 0.938 
7 3 2 1.256 1.686 0.303 0.625 17 7 5 1.369 2.005 0.619 0.919 
8 10 11 1.443 1.795 0.135 0.472 18 7 13 1.357 2.218 0.612 0.994 
9 4 3 2.026 2.532 0.149 0.759 19 14 1 1.097 2.539 0.559 0.916 

10 11 12 1.455 2.496 0.300 0.601 20 14 9 1.097 1.689 0.557 0.860 

4. Conclusions
In this paper, a novel protection coordination scheme is presented, which modifies 

the conventional TCC of OCR with a hybrid TCV. Further, the ORC problem was solved 
optimally with α-HHO, which is modeled by modifying the exploration phase of conven-
tional HHO, based on α-HH selection and mutation processes. The scheme was evaluated 
on the standard IEEE-8 bus system. The results suggest that the highest reduction in over-
all relay operating time was achieved with zero miscoordination, which shows the effec-
tiveness of the proposed scheme. 

Figure 2. Convergence graph with HHO [6] and α-HHO.
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Relay
HHO [6] Proposed α-HHO

Relay
HHO [6] Proposed α-HHO

TMS Ip (kA) TMS Ip (kA) TMS Ip (kA) TMS Ip (kA)

1 0.672 0.120 0.670 0.151 8 0.840 0.125 0.707 0.157

2 0.641 0.189 0.710 0.234 9 0.678 0.135 0.843 0.172

3 0.103 0.144 0.381 0.180 10 0.412 0.092 0.846 0.113

4 0.851 0.207 0.075 0.254 11 0.682 0.155 0.903 0.190

5 0.681 0.145 0.838 0.182 12 0.873 0.140 0.079 0.176

6 0.858 0.130 0.943 0.161 13 0.877 0.144 0.739 0.179

7 0.518 0.162 0.866 0.202 14 0.663 0.191 0.648 0.240

Table 3. Primary/backup relay operation time for all pairs obtained using HHO and α-HHO.

Pair

TCC with
HHO [6]

Hybrid TCV
with α-HHO Pair

TCC with
HHO [6]

Hybrid TCV
with α-HHO

PR BR TOPPR TOPBR TOPPR TOPBR PR BR TOPPR TOPBR TOPPR TOPBR

1 1 6 1.753 2.054 0.448 0.788 11 5 4 1.510 2.331 0.617 0.956

2 8 7 1.415 2.373 0.135 1.158 12 12 13 0.109 1.869 0.538 0.865

3 8 9 1.415 1.731 0.229 0.797 13 12 14 0.109 1.605 0.506 0.836

4 2 1 1.552 2.628 0.304 1.014 14 6 5 1.664 2.064 0.556 0.915

5 2 7 1.552 2.366 0.301 1.121 15 6 14 1.664 2.220 0.551 1.129

6 9 10 1.278 1.582 0.195 0.739 16 13 8 1.359 1.667 0.617 0.938

7 3 2 1.256 1.686 0.303 0.625 17 7 5 1.369 2.005 0.619 0.919

8 10 11 1.443 1.795 0.135 0.472 18 7 13 1.357 2.218 0.612 0.994

9 4 3 2.026 2.532 0.149 0.759 19 14 1 1.097 2.539 0.559 0.916

10 11 12 1.455 2.496 0.300 0.601 20 14 9 1.097 1.689 0.557 0.860

4. Conclusions

In this paper, a novel protection coordination scheme is presented, which modifies the
conventional TCC of OCR with a hybrid TCV. Further, the ORC problem was solved opti-
mally with α-HHO, which is modeled by modifying the exploration phase of conventional
HHO, based on α-HH selection and mutation processes. The scheme was evaluated on the
standard IEEE-8 bus system. The results suggest that the highest reduction in overall relay
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operating time was achieved with zero miscoordination, which shows the effectiveness of
the proposed scheme.
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