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Abstract: Developing countries have witnessed a remarkable surge in the energy crisis due to the
supply and demand gap. One of the solutions to overcome this problem is the optimal use of energy
that can be achieved by employing demand side management (DSM) and demand response (DR)
methods intelligently. Machine learning and data analysis tools help us create intelligent systems
that motivate us to use machine learning to implement DSM/DR programs. In this paper, a novel
DSM algorithm is introduced to implement DSM intelligently by using artificial intelligence. The
results show an efficient implementation of an artificial neural network (ANN) along with demand
side management, whereas the peak and off-peak loads were normalized to a certain range where a
perfect agreement between supply and demand can be reached.

Keywords: DSM; ANN; orange canvas; pattern recognition; decision tree; load management

1. Introduction

In electricity grids, electricity consumption and generation must be equal at all times.
With a greater gap between production and consumption, there will be more chances
of uncertainty and unreliability in the electricity supply. The intermittency will increase
with the increase in renewable energy from PVs and wind turbines, which will decrease
the guaranteed energy dispatch. In 2020, despite COVID-19, China inducted 117 GW of
renewable energy [1]. Renewable energy generation has reached a record high at 29% of
the total global electricity mix. Power plants are designed to meet the maximum demand
required to construct high-capacity plants, adding more economical pressure on developing
countries such as Pakistan.

To address this issue, it is necessary to understand the concept of demand response and
demand side management. Demand side management programs motivate the consumers to
actively participate in the electricity market [2]. According to the Federal Energy Regulatory
Commission (FERC), demand response is the change in the electricity usage pattern that
is achieved by influencing end-use customers by initiating different incentives in the
electricity price [3].

There are two approaches to implementing demand response for any objective [4]. In
direct load control, consumers receive credits for each event of direct load interruption.
In the price-based approach, utility companies offer incentives to shut the load at peak
load times [4]. Generation and distribution companies receive benefits in infrastructural
expenses by using demand response to reduce the peaks [5]. A scheduling framework was
presented in [6] that explains the optimal scheduling of residential loads with the objective
of reducing electricity bills while maintaining comfort.

A home energy management system was presented in [7] that schedules the load
on predefined priorities and maximum demand limits. An intelligent residential load
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management system (IRLMS) was presented in [8] that classifies schedulable loads (SL)
and non-schedulable loads (NSL).

In this paper, we present artificial intelligence-based demand side management of
residential loads. This paper is arranged as follows: Section 2 covers the methodology,
where we describe the data collection, generation of patterns from collected data, pattern
recognition using artificial intelligence and the algorithm. The simulation and results are
presented in Section 3, and the conclusion is provided in Section 4.

2. Methodology

The methodology consists of the following sections: data collection, generation of
patterns, pattern recognition and application of demand side management (DSM) to cater
for the supply demand gap. More accurate results can be formulated by having more
meaningful data. Therefore, data collection is the first step that later helps in compiling
reliable results. Data were collected by using smart meters from an e-guard that can collect
energy usage data of up to 12 different devices.

We conducted supervised learning, so our training data had a set target. A total of
70% of the data were selected for training purposes, while the remaining 30% of the data
were used for testing purposes. The test data have no target because they were used to test
the machine training accuracy.

ANN and decision tree algorithms are most commonly used for classification. We
trained our machine using both algorithms and compared the results, where the ANN
achieved superior results that led us to use the ANN for pattern recognition. The complete
process of pattern recognition is shown in Figure 1.
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Demand side management starts after the recognition of patterns by using an artificial
neural network. A smart demand side management algorithm is shown in Figure 2. Our
target was to maintain the load within normal limits with the minimum discomfort to
consumers, and with benefits for the supply company in peak load reduction and valley
filling.
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Figure 2. Load management algorithm by demand side management (DSM).

3. Simulation and Results

Based on the data collected from the demand side, we created the patterns of the
load. The patterns were used for training and testing the model implanted in an orange
canvas. As an example, a one-month pattern of the combined load of all houses is shown
in Figure 3.
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The receiver operating characteristic curve (ROC) is the measure of sensitivity versus
1 [9]. It shows the performance of a classifier at all classification thresholds. Another factor
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to determine the classifier accuracy is the area under the curve (AUC). If a classifier has a
higher AUC, it can be considered to be more accurate for classification. Figure 4 shows the
ROC graph of the decision tree, and Figure 5 shows the ROC of the ANN.
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Figure 5. ROC of artificial neural network (ANN).

After training both systems, we obtained the prediction results. As we trained our
system to classify normal, peak and off-peak patterns, the predictor should predict all three
types of patterns accurately. Table 1 shows the test and scores of both the decision tree and
ANN.

Table 1. Test and scores.

Model AUC CA F1 Score Precision Recall

Decision Tree 0.5 0.3333 0.1666 0.1111 0.3333

ANN 1.0 1.0 1.0 1.0 1.0

On the bases of these training results, we found that an ANN is the most suitable
form of algorithm to use for the classification of residential load patterns. Then, we used
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the testing data to test whether our machine predicted the load pattern accurately or not.
Figure 6 shows the testing model of the ANN. Here, we inserted the test file, and the
predictor classified the data pattern of the test file. We obtained patterns of the peak load,
and our machine classified it accurately. Figure 7 shows the prediction result of testing.
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After the recognition of patterns obtained by the ANN algorithm, we applied DSM for
load management. By using the algorithm shown in Figure 2, we normalized the off-peak
load and peak load in the normal load range. It can be observed in Figure 8 that the areas
above and below the normal demand range refer to peak and off-peak loads, respectively,
which were later normalized by employing DSM.

From 9:00 p.m. to 1:00 a.m., the peak load occurred, and from 5:00 a.m. to 8:00 a.m.,
the off-peak load was obtained.
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Figure 8. Average residential load before and after DSM.

4. Conclusions

The main crux of this research is the use of classified data generated from an ANN for
demand side management. A novel smart DSM algorithm was introduced to normalize the
load in peak and off-peak load intervals that used an energy storage system and priority-
based load interruption technique to cater for the gap between supply and demand. The
DSM-based algorithm was further tested on residential loads, and the results show an
efficient normalization between the peak and off-peak loads.
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