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Abstract: Motivated by their functional conformity, micro-cantilever-based MEMS oscillators are
investigated in this study as structure-integrable transducers for the acquisition of guided ultrasonic
waves in fiber–metal laminates. While acceleration-sensitive oscillators are limited in their maximum
frequency, the presented displacement-sensitive oscillator is operated quasi-free in the fashion of a
seismometer, making it particularly sensitive for high-frequency displacements above the sensor’s
resonance frequency. The potential of this non-traditional application of a seismometer for the acqui-
sition of structure-borne ultrasound is demonstrated experimentally. Therefore, MEMS oscillators are
formed from the membrane of established pressure sensors by femtosecond laser micro-machining
and mounted onto a setup for stimulation by structure-borne ultrasound. Experimental results
indicate the targeted proportionality of the high-frequency stimulus and the sensor response. In
conclusion, MEMS oscillators enable acquisition of high-frequency displacements and could therefore
serve as structure-integrable sensors for guided ultrasonic waves.

Keywords: Structural Health Monitoring (SHM); Fiber Metal Laminates (FML); MEMS oscillator;
ultrasound transducer; forced quasi-free oscillation; structure-integration; acoustic impedance match-
ing; functional compliance

1. Introduction

For Structural Health Monitoring (SHM) of composite materials such as Carbon Fiber
Reinforced Plastic (CFRP), the propagation of Guided Ultrasonic Waves (GUW) can be
monitored using a network of surface-mounted piezoelectric transducers recording the
local surface bending state as a function of time [1]. Any defects—presenting as cracks
or delaminations in the monitored structure—result in a local change of the acoustic
impedance, which causes reflections and mode-conversion of the acoustic signal, finally
resulting in a change of the acoustic footprint in the sensor recordings. From this digital
footprint, damages can be localized, quantified, and classified.

Modern aircraft use Fiber Metal Laminates (FML), e.g., GLARE (Glass Laminate Alu-
minum Reinforced Epoxy), as construction materials because they combine the favorable
ductile properties of metals with the high tensile strength of composite materials [2]. A
further benefit of FML is that material degradation occurs as a steady process, so that the
material’s condition can be monitored and quantified until service is required.
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Elastic waves in plates propagate in the form of GUW. They are characterized by
velocity dispersion—which describes the dependence of the phase velocity from the signal
frequency—and the material’s elasticity and density. Lamb waves occur in symmetric
modes and antisymmetric modes of increasing order.

In contrast to homogenous materials such as metals or CFRP, the high difference in
acoustic impedance between the layers of FML, e.g., glass fiber and aluminum layers for
GLARE, is expected to have an impact on the wave propagation [3].

To gain a better understanding of this complex wave propagation within FML, its inner
layers need to be monitored individually. Therefore, an SHM approach for FML requires
embedded sensors, which should only interfere minimally with the propagating waves.

The typical ceramic piezoelectric transducers are inappropriate because their dimen-
sions are inevitably large and the material is poorly adapted to the acoustic impedance
of the surrounding material. Suitable sensors should therefore be made of materials with
better-matched acoustic impedance. Sensors that are smaller than the wavelength of the
propagating ultrasound waves should interfere even less [4]. To address these requirements
on the sensor, structure-integrable and impedance-matched sensors for GUW are presented
in this study using MEMS oscillators.

2. Micro-Oscillator Concept

The acoustic impedance for GUW is calculated as follows: Z f = ρ · cg, with density
ρ and group velocity cg. Investigations for a frequency–thickness product of 48 kHz mm
show that the acoustic impedance of typical MEMS materials such as silicon
(Z f = 20.2× 106 kg·m−2·s−1) or borosilicate glass (Z f = 11.8× 106 kg·m−2·s−1) is much
better adapted to glass fiber laminate (Z f = 10.1× 106 kg·m−2·s−1) than typical piezo
ceramics, e.g., PZT (Z f = 35.8× 106 kg·m−2·s−1). Further, the shape and size of MEMS
devices can be adapted.

A micro-mechanical oscillator consists of a spring-loaded mass that, when subjected
to a force by an external acceleration, displaces relative to its frame. The displacement can
be transduced (typically by capacitive or piezoresistive schemes) into an electrical sensor
signal [5]. Considering the dynamics of a spring-loaded mass, a second-order model must
be used to calculate the complex amplitude. The real part of this complex amplitude is
given in Figure 1, where a weakly damped system is assumed as an example. As long
as the excitation frequency is well below the resonance frequency, a quasi-static response
with a signal amplitude proportional to the acceleration amplitude is obtained. A forced
quasi-free oscillation is obtained if the excitation frequency is far above the resonance of
the spring-mass system, as known for a seismograph [6]. In this regime, the sensor signal
only weakly depends on the acceleration amplitude, making it unsuitable for acceleration
sensing applications. However, if the displacement of the sensor frame is considered
instead of acceleration, a strong and practically frequency-independent relation is obtained.
For this reason, structure-borne ultrasound can be picked up as a quasi-free oscillation of a
micro-cantilever or of other MEMS accelerometers.
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Figure 1. Signal amplitude of a generic mass-spring oscillator divided by constant external acceler-
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plitude (blue). Amplitude ratios are given in arbitrary units. 
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cording, a recently developed structure-integrable pressure sensor [7] was modified to 

form a micro-cantilever oscillator. The unsupported silicon membrane of the pressure sen-

sor is released from three sides, using femtosecond laser micro-machining. This yields a 

single crystalline micro-cantilever with piezoresistive read-out with a well-defined spring 

constant, which is presented in Figure 2. The signal for cantilever displacement is read out 

through a quarter-bridge circuit, which consists of piezoresistive paths defined by local 

boron doping. Four pads on the sensor’s bottom side provide the terminals of the circuitry, 

allowing flip-chip bonding to a PCB substrate via soldering. 

 

Figure 2. Photography of the micro-cantilever sensor mounted onto polyimide substrate (left). Mi-

croscopic bottom-view of the sensor, showing the position of the micro-cantilever in relation to the 

glass-cavity (middle) and the marked positions of the piezoresistors (right). 

3.2. Test Setup 

To generate an environment for ultrasonic excitation and recording, a test bed as il-

lustrated in Figure 3 was used. For ultrasound excitation, a piezoelectric transducer was 

soldered onto a FR4 PCB substrate, which was adhesively bonded to a metal plate as a 

socket. The micro-cantilever chip was flip-chip bonded (soldered) onto a thin polyimide 

PCB for signal transport. This PCB was then bonded to the piezoelectric ultrasound source 

driven by a signal generator using a thin layer of superglue. The sensor’s Wheatstone cir-

cuit was evaluated using a high-frequency bridge amplifier (DEWETRON, DAQP-

BRIDGE-B) without filtering and with the amplification set to 10×. The amplifier’s output 

was recorded using one channel of a digital oscilloscope, while the excitation signal was 

simultaneously recorded on the second channel. 

Figure 1. Signal amplitude of a generic mass-spring oscillator divided by constant external accel-
eration amplitude (red) compared to signal amplitude divided by constant external displacement
amplitude (blue). Amplitude ratios are given in arbitrary units.

3. Materials and Methods
3.1. Sensor Manufacturing

For the proof of the quasi-free oscillation concept for structure-borne ultrasound record-
ing, a recently developed structure-integrable pressure sensor [7] was modified to form a
micro-cantilever oscillator. The unsupported silicon membrane of the pressure sensor is
released from three sides, using femtosecond laser micro-machining. This yields a single
crystalline micro-cantilever with piezoresistive read-out with a well-defined spring con-
stant, which is presented in Figure 2. The signal for cantilever displacement is read out
through a quarter-bridge circuit, which consists of piezoresistive paths defined by local
boron doping. Four pads on the sensor’s bottom side provide the terminals of the circuitry,
allowing flip-chip bonding to a PCB substrate via soldering.
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Figure 2. Photography of the micro-cantilever sensor mounted onto polyimide substrate (left).
Microscopic bottom-view of the sensor, showing the position of the micro-cantilever in relation to the
glass-cavity (middle) and the marked positions of the piezoresistors (right).

3.2. Test Setup

To generate an environment for ultrasonic excitation and recording, a test bed as
illustrated in Figure 3 was used. For ultrasound excitation, a piezoelectric transducer was
soldered onto a FR4 PCB substrate, which was adhesively bonded to a metal plate as a
socket. The micro-cantilever chip was flip-chip bonded (soldered) onto a thin polyimide
PCB for signal transport. This PCB was then bonded to the piezoelectric ultrasound source
driven by a signal generator using a thin layer of superglue. The sensor’s Wheatstone circuit
was evaluated using a high-frequency bridge amplifier (DEWETRON, DAQP-BRIDGE-B)
without filtering and with the amplification set to 10×. The amplifier’s output was recorded
using one channel of a digital oscilloscope, while the excitation signal was simultaneously
recorded on the second channel.
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Figure 3. Test setup with piezoelectric excitement and MEMS micro-cantilever sensor.

4. Results

Bursts of eight sine waves with an amplitude of 10 Vpp and different frequencies were
used for the out-of-plane excitation.

First, the frequency was set to 42 kHz, which is the first bending mode resonance
frequency of the micro-cantilever. The transfer behavior is presented in Figure 4. In reso-
nance, more energy is transferred into the oscillatory system than is dissipated by damping.
The stored energy accumulates and the cantilever’s deflection amplitude increases with
each excitation cycle. In resonance, the structure-borne ultrasound waveform cannot be
reconstructed easily.
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Figure 4. Transient response of the micro-cantilever sensor (black), excited with a near-resonance
42 kHz eight-period sine burst (red).

Next, a frequency was chosen, lying between the first (≈42 kHz) and second (≈280 kHz)
bending mode resonance frequencies of the micro-cantilever. Figure 5 shows the time re-
sponse of the cantilever to a burst of 100 kHz. The obtained signal waveform is, after a
short transient, proportional to that of the ultrasound.
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Figure 5. Transient signal response of the micro-cantilever sensor (black), excited with a 100 kHz
eight-period sine burst (red).

At frequencies below the first bending mode (resonance) frequency, the local periodic
displacement was not sufficient to be extracted from the sensor signal.



Eng. Proc. 2021, 10, 81 5 of 5

5. Discussion and Outlook

The presented experiment has proven the validity of the concept of structure-borne
ultrasound recording using a MEMS oscillator in quasi-free excitation. The obtained sensor
signal is almost proportional to the waveform of structure-borne ultrasound excitation.
However, the sensor signal contains small non-linear contributions, which are probably a
result of the cantilever harmonic modes, which are weakly excited by the signal’s bandwidth.

In further investigations, the presented quasi-free sensor concept will be investigated
in depth. Tailored sensors will improve the sensitivity and adjust the sensor’s inherent
dynamics; a tailored ultrasonic test setup will allow experiments with a mode-selective
excitation of the sensors on an actual composite waveguide [8]. Moreover, an anodically
bonded sensor lid will allow for material integration and would additionally provide a
possibility for damping adaption via adjustment of the enclosed atmosphere.
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