
����������
�������

Citation: Obi, A.I. An Overview of

Wearable Photoplethysmographic

Sensors and Various Algorithms for

Tracking of Heart Rates. Eng. Proc.

2021, 10, 77. https://doi.org/

10.3390/engproc2021010077

Academic Editor: Stefano Mariani

Published: 27 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

An Overview of Wearable Photoplethysmographic Sensors and
Various Algorithms for Tracking of Heart Rates †

Amarachukwu Ikechukwu Obi

Department of Mechanical Engineering, University of Nigeria, Nsukka 410001, Nigeria;
amarachukwu.obi@unn.edu.ng
† Presented at the 8th International Electronic Conference on Sensors and Applications, 1–15 November 2021;

Available online: https://ecsa-8.sciforum.net.

Abstract: It is very challenging to estimate the accurate heart rate/beat during intense physical
activities due to corruption of motion artifacts (MAs). However, it is difficult to reconstruct a clean
signal and extract heart rate/beat from contaminated photoplethysmography (PPG) signals. It was
also observed that various algorithms have been developed for use in the detection of heart rates
during physical activities by reconstructing the contaminated PPG signals to clean PPG signals.
Against this backdrop, an overview of the various algorithms was conducted with their results
from various works. These results are such that the motion-tolerant adaptive algorithm indicated
high agreement and high correlation of more than 0.98 for heart rate (HR) and 0.7 for pulse oxygen
saturation (SpO2) extraction between measurements by reference sensors and the algorithm. In
addition, the distortion rates were reduced from 52.3% to 3.53%, at frequencies between 1 Hz and
2.5 Hz, when the two-dimensional active noise cancellation algorithm was applied representing daily
motion such as walking and jogging. The correlation coefficient between the power spectral densities
of the reference and reconstructed heart-rate time series was found to be 0.98, which showed that the
spectral filter algorithm for motion artifacts and heart-rate reconstruction (SpaMA) method has a
potential for PPG-based HR monitoring in wearable devices for fitness tracking and health monitoring
during intense physical activities. The experimental result of the single-notch filter and ensemble
empirical mode decomposition (NFEEMD) algorithm using the Pearson correlation was 0.992 which
illustrated that the NFEEMD algorithm is not only suitable for HR estimation during continuous
activities but also for intense physical activities with acceleration. Other algorithms suitable for HR
estimation during physical activities include the time–frequency spectrum for the detection of motion
artifacts (TifMA) algorithm, novel time-varying spectral filtering algorithm, noise-robust heart-rate
estimation algorithm, real-time QRS detection algorithm, and many other algorithms in this regard.

Keywords: heart rate; physical activities; motion artifacts; photoplethysmographic signal; algo-
rithms; detection

1. Photoplethysmographic Signal with Motion Artifacts (MAs)—An Introduction

Accurate estimation of heart rates and dynamic accurate heart-rate (HR) estimation
using photoplethysmography (PPG) signals during intense physical activity is a very
challenging problem and also difficult [1,2]. This is because strenuous and high-intensity
exercise can result in severe motion artifacts in PPG signals, making accurate heart-rate
(HR) estimation difficult [1]. Some heart-rate monitors use photoplethysmography (PPG)
technology as this allows the device to be small and wearable [1,3]. In addition to the
acquisition of HR in response to exercise, research has recently focused on obtaining
heart-rate variability (HRV) information from wearable sensors including devices that use
photoplethysmographs [1,4].

A photoplethysmograph is an optically obtained plethysmograph, which, generally, is
a measurement of changes in volume within an organ’s whole body, usually resulting from
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fluctuations in the amount of blood or air that the organ contains. A photoplethysmograph
is often obtained by using a pulse oximeter. A conventional pulse oximeter monitors the
perfusion of blood to the dermis and subcutaneous tissue of the skin. Pulse oximetry is
a non-invasive method that allows for the monitoring of the oxygenation of a subject’s
blood [5]. A photoplethysmograph can measure changes in tissue and blood volume by
emitting light on tissues and detecting the variations in optical absorption and scatter-
ing. The applications of PPG include monitoring of heart rate (HR), hemoglobin oxygen
saturation (SpO2), and potentially detection of epileptic seizures and atrial fibrillation [6–9].

Clinicians have cited motion artifacts in pulse oximetry as the most common cause of
false alarms, loss of signal, and inaccurate readings [10]. During physical activities, MA
contamination in PPG signals seriously interferes with HR estimation. The MAs are mainly
caused by ambient light leaking into the gap between the PPG sensor surface and skin
surface. In addition, the change in blood flow due to movements is another MA source [11].
In practice, MAs are difficult to remove because they do not have a predefined narrow
frequency band and their spectrum often overlaps with that of the desired signal [12].
Consequently, development of algorithms capable of reconstructing the corrupted signal
and removing artifacts is challenging [1]. However, in measurement sites, noise interference
produced by motion artifacts (MAs) and cardiac arrhythmia is inevitable [2]. Due to human
movement, relative motion may occur between the sensor and skin, and thus the principal
component of true HR information is weakened [2]. The quality of the PPG sensor signal
is especially susceptible to motion artifacts. In other words, the accuracy of heart-rate
estimation depends on the quality of the photoplethysmograph [2].

2. Heart-Rate Variability (HRV)

The most commonly measured value is the heart rate (HR), although advanced appli-
cations also use other values, e.g., pulse irregularity, as well as biometric identification or
analysis of accurate electrical signals that cause heart contraction, i.e., electrocardiography
(ECG) [13,14]. Accurate ECG requires connecting electrodes to the patient’s body in several
different places, which is inconvenient for the patient, and it can be used only in certain
situations [13]. A much more convenient method is measuring the pulse on the wrist by
using photoelectric methods. The skin of the wrist is irradiated with single or multicolor
light, and then the reflected light is measured. The intensity of the reflected light depends
on the absorption of the skin, which depends on the blood volume supplied to the tissues.
In this way, the received signal contains information about the current blood supply to the
vessels near the measuring device. This method, introduced by Hertzman [13,15], is known
as photoplethysmography (PPG). Unfortunately, PPG signals obtained from a moving
person’s wrist are weak, distorted, and contain noise. The noise level is often higher than a
usable PPG signal. Correct analysis of a low-quality PPG signal is a very challenging task
and can consume significant processing time, energy, and resources. Increased HRV has
been associated with lower mortality rates and is affected by both age and sex [4]. During
graded exercise, the majority of studies showed that HRV decreases progressively up to
moderate intensities, after which it stabilizes [16]. Although there are many promising and
attractive features of using pulse oximeters for vital sign monitoring, currently, they are
mainly used on stationary patients [1]. This is because motion artifacts (MAs) result in
unreliable HR and SpO2 estimation [1,17]. The pulsatile “AC” physiological waveform can
be obtained due to cardiac synchronous changes in blood volume with the heartbeat. Due to
this property, PPG can be a source of real-time heart-rate (HR) information calculation [18].
The output signal of PPG sensors is composed of alternating current (AC), originating
from the heart cycle, and direct current (DC), originating from veins and stationary tissue.
Motion artifacts affect DC signals, making it difficult to detect AC signals. Thus, it is
important to reduce DC signals and increase the AC/DC ratio [19,20].
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3. Various Algorithms for Tracking of Heart Rates

Several methods are usually used to recover or reconstruct a clean PPG signal from a
corrupted one before HR is extracted. Generally speaking, there are many kinds of MA-
removal algorithms apriori: classical digital filters [21]; adaptive filters [22]; time–frequency
analysis (wavelet decomposition) [23], singular value decomposition [24], and empirical
mode decomposition [25]; spectrum analysis; and bland signal processing [26]. These
algorithms mentioned above can be applied to the signals that are corrupted slightly when
motion artifacts are not strong. However, these techniques cannot figure out the precise
heart-rate estimation when intense physical exercise such as boxing occurs. Therefore,
people would always prefer to use complex algorithms when extracting HR from the
corrupted PPG signals, rather than a single technique. When the motion artifacts are
strong, heart-rate information can be mostly masked by the noise component. Thus, the
removal of MAs in intense exercise from the PPG is always challenging. Fukushima
et al. [27] and Zhang et al. [9] argued that acceleration data are also helpful for removing
MAs. However, the tri-axis acceleration data (acceleration data measured by a sensor
for measuring acceleration in the x, y, and z directions) play an important role in MA
removal. Recently, some study groups have concentrated on the solution of strong MA
removal and have made progress. Therefore, many state-of-the-art algorithms are proposed.
Zhang et al. [8] put forward the TROIKA: a general framework for heart-rate monitoring
using wrist-type photoplethysmographic signals during intensive physical exercise. This
general framework consists of three key parts, namely signal decomposiTion, sparse signal
RecOnstructIon, and spectral peaK tracking—known as TROIKA [8]. In a particular
framework, signal decomposition using singular spectrum analysis was applied to cancel
partial MAs. Sparse PPG signal reconstruction puts the sparse signal into a high-solution
spectrum so that the true peak corresponding to the heart rate is found. Then, Zhang
et al. proposed an improved algorithm JOSS [9] with the help of acceleration data. JOSS,
which has been shown to estimate HR more accurately than TROIKA, is based on the idea
that the spectra of PPG signals and simultaneous acceleration signals have some common
spectrum structures, and thus it formulates the spectrum estimation of these signals into a
joint sparse signal recovery model (JOSS) using the multiple measurement vector (MMV)
model.

The spectra of PPG signals and simultaneous acceleration signals are jointly estimated
using the multiple measurement vector (MMV) model in sparse signal recovery. This algo-
rithm shows the effect of acceleration data on the accuracy of heart-rate estimation from the
PPG [2]. Although JOSS has been shown to be much more accurate than previous methods
for reconstruction of heart rate from MA-contaminated PPG signals, the main disadvantage
of the method is it can merely provide smoothed HR reconstruction estimations. Neither
time-domain PPG signal reconstruction nor heart-rate variability analysis can be performed
using JOSS or TROIKA [1].

The spectral filter algorithm for motion artifacts and heart-rate reconstruction (SpaMA
algorithm) [1] proposed by Salehizadeh et al. combines the PPG signal and acceleration data.
Its key idea is to calculate the power spectral density of both PPG and acceleration data,
and the related frequency peaks resulting from MAs can be distinguished from the PPG
spectrum. In all of the experiments, the reference HR was calculated from an ECG signal
that was collected simultaneously with the PPG signal. The estimated HR was calculated
from the spectrum of PPG in 8 s time windows. It was shown in the results section that the
proposed SpaMA algorithm can be used for tracking HR changes during severe motion
artifacts with an average error of just 1.86 BPM (beats per minute) compared to that of
the reference ECG (Table A1 in Appendix A). These results are superior to the three other
algorithms tested: TROIKA, JOSS, and WFPV (check Table A1 in Appendix A) [8,9,28].

The results in Table A1 show that SpaMA has better performance than JOSS and
TROIKA for all 12 subjects in the first datasets. In comparison to WFPV, the proposed
SpaMA approach outperforms WFPV on average across all 23 subjects in both datasets (1)
and (2). The total average of E1 (error 1) of SpaMA is less than two beats per minute for
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all 33 subjects [1]. The average of E1 across the treadmill experiment recordings (activity
Type 1 (IEEE dataset) and Type 4 (Chon Lab dataset)) is around one beat per minute for
all 22 subjects. Table A2 presents the correlation and statistical difference using Student’s
t-test between PSD of estimated and reference HRV in both LF (0.04–0.15 Hz) and HF
(0.15–0.4 Hz) frequency ranges. The correlation values in the table were calculated based
on Pearson’s linear correlation coefficient. As shown in Table A2, there was no difference
between the reference and the derived HRV for LF (low frequency), and the difference
was seen in only 4 out of 10 subjects for HF (high frequency) [1]. Table A3 shows some
of the widely reported time-domain HRV parameters such as the mean HR, standard
deviation (SDNN) of the normal-to-normal (NN) interval, root mean square of successive
difference (RMSSD) of the NN interval, and the number of interval differences of successive
NN intervals greater than 50 ms divided by the total number of NN intervals (pNN50)
estimated from SpaMA in comparison to the reference ECG NN interval [1]. None of these
parameters were found to be significantly different between our algorithm-derived and the
reference HRV.

The SpaMA algorithm can be potentially implemented in real time. It takes only
110 ms per 8 s segments. Therefore, given the high accuracy of the proposed approach
in estimating HR despite severe motion artifacts, this method has the potential to be
applicable for implementation in wearable devices such as smart watches and PPG-based
fitness sensors [1].

The signal sparsification technique through M-FOCUSS in TROIKA and JOSS was
applied to the HR-estimation algorithm, which involves extensive computational complex-
ity [2]. For example, for the sampling frequency of 125 Hz, TROIKA takes about 3.5 h to
estimate HR for the first 12 datasets on a computer equipped with Intel Core-i7 4790 at
3.6 GHz, 8-GB RAM, Windows 7 64 bit, and MATLAB 2013a. The regularized M-FOCUSS
algorithm [9,29] was used to estimate the solution matrix of the MMV model, with the
parameter p = 0.8, regularization parameter λ = 10−10, and spectrum grid number N = 1024.
Its maximum iteration number was set to 4. Note that the TROIKA algorithm also used
the M-FOCUSS algorithm to estimate the sparse spectrum of PPG signals, as well as to
estimate the solution of the SMV model. FOCal Underdetermined System Solver (FOCUSS),
in the multiple measurement case, is used in applications such as neuromagnetic imaging,
where multiple measurement vectors are available, and solutions with a common sparsity
structure must be computed [9,29]. The algorithm proposed by Khan [30] takes 668 s on
the same computer.

From Table A4, the NFEEMD algorithm performs better compared to the others. For
the first 12 of 23 datasets, the average absolute error (AAE) is 1.12 + 0.51 (mean ± standard
deviation) BPM, and AAE (average absolute error) is 2.68 + 2.19 BPM for the remaining 11
datasets. For all 23 datasets, an average absolute error of 1.87 BPM and standard deviation
of 1.79 BPM were recorded using the NFEEMD framework under intense physical activities.
It should be noted that the most obvious difference between the first 12 datasets and the
last 11 datasets is the severity of motion. The activities of sample set T0 on the treadmill
have a certain regularity, and the activities of sample set T1 and sample set T2 including
arm movements are intense and random. In Table A4, the average absolute error of the last
11 datasets (2.68 BPM) by using NFEEMD is significantly larger than the first 12 datasets
(1.12 BPM). This result is consistent with the severity of the state of motion; thus the
more intense the movements, the larger the HR-estimation error obtained. Although the
errors are slightly larger for the last 11 datasets, HR estimates do not get derailed (check
Jiajia, [2]). The results of comparisons in Table A4 show that the NFEEMD algorithm
could obtain the most accurate results on HR estimates for the last 11 datasets including
the CNAFSD algorithm [31] which proposed a hybrid-motion artifact-removal method,
which combines non-linear adaptive filtering and signal decomposition (singular spectrum
analysis), as well as the second most accurate results on HR estimates for the first 12 datasets
compared with the SPECTRAP algorithm [32]. Sun et al. proposed SPECTRAP [32] using
a new spectrum-subtraction algorithm, and Mashhadi et al. [33] proposed an algorithm
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for the MA cancellation step that cleanses the MA-contaminated PPG signals utilizing the
acceleration data and the spectral analysis step that estimates a higher-resolution spectrum
of the signal and selects the spectral peaks corresponding to HR. The accuracy of the
NFEEMD algorithm is slightly lower than the SPECTRAP for 22 datasets (except dataset
13). In a word, the results in Table A4 indicate that the NFEEMD algorithm can adapt to
more intense circumstances such as boxing in the last 11 recordings, and our algorithm is
more robust.

To examine in more detail the performance of the NFEEMD algorithm with a change
in sampling frequency, we experimented with a 25 Hz sampling frequency using the
same algorithm for one-channel PPG and three-channel ACC (acceleration data). The
corresponding AAE results for all datasets are listed in Table A5, which demonstrates that
the NFEEMD algorithm performs better in 125 Hz sampling frequency than in 25 Hz. In
other words, more detailed information can be recorded at a high sampling frequency so
that the HR-estimation accuracy can be improved.

The MA-removal algorithm (NFEEMD) is the repeated single-notch filter and ensemble
empirical mode decomposition [2]. The NFEEMD algorithm takes 229 s for calculation of
the first 12 datasets and 476 s for all 23 datasets using the same computer configuration.
In addition, the NFEEMD algorithm takes 86 s for the first 12 datasets and 191 s for all 23
datasets when the sampling frequency is 25 Hz. JOSS takes 300 s for all the datasets at 25
Hz sampling frequency [2]. The Pearson correlation for the NFEEMD algorithm is about
0.992. It is obvious that the NFEEMD algorithm has the advantage of low computational
complexity and short running time. Of course, the algorithm also needs to be improved.
On the one hand, it was shown that the difference error is large when the real HR values
are between 50 and 80 [2].

Reference [27] suggested a spectral subtraction technique to remove the spectrum
of acceleration data from that of a PPG signal. Acceleration data can be also used to
reconstruct the observation model for Kalman filtering [22] to remove MA. Temko [28]
proposed an approach to HR estimation based on Wiener filtering and the phase vocoder
(WFPV). In this review, it was shown from Table A1 in Appendix A that WFPV on average
can perform better than the JOSS algorithm. The main idea of WFPV is to estimate motion
artifacts from accelerometer signals and then use a Weiner filter to attenuate the motion
components in the PPG signal. A phase vocoder is also applied to overcome the limited
resolution of the Fourier transform and to refine the initial dominant frequency estimation.
The phase vocoder is a well-established tool for time scaling and pitch shifting speech and
audio signals via modification of their short-time Fourier transforms (STFTs). However,
the phase vocoder is also known for introducing a characteristic perceptual artifact, often
described as “phasiness”, “reverberation”, or “loss of presence” [34].

The QRS detection algorithm failed to properly detect 0.675 percent [35] of the beats.
Usually, the QRS complex consists of positive (upright) deflections called R waves and
negative (inverted) deflections called Q and S waves. If there is no R wave, the complex is
called a QS complex. If there is no Q wave, the complex is called an RS complex. Again,
the heart beats in a regular, rhythmic fashion producing a P wave, QRS complex, and
T wave [36], though the QRS detection algorithm automatically adjusts thresholds and
parameters periodically to adapt to such ECG changes as QRS morphology and heart rate.
A special digital bandpass filter reduces false detections caused by the various types of
interference present in ECG signals. This filtering permits use of low thresholds, thereby
increasing detection sensitivity. The QRS detection algorithm [35] reliably recognizes QRS
complexes based upon digital analyses of slope, amplitude, and width. Therefore, this is
real-time QRS detection for recognizing QRS complexes in ECG signals.

The motion-tolerant adaptive algorithm for wearable photoplethysmographic biosen-
sors [37] removes motion artifacts due to various sources including tissue effect and venous
blood changes during body movements and provides noise-free PPG waveforms for further
feature extraction. A two-stage normalized-least-mean-squares (NLMS) adaptive noise
canceler was designed and validated using a novel synthetic reference signal at each stage.
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Evaluation of this algorithm was performed by Bland–Altman agreement and correla-
tion analyses against reference heart rate from commercial ECG and SpO2 sensors during
standing, walking, and running at different conditions for single- and multi-subject scenar-
ios [37]. Correlation analysis may lead to incorrect or debated results in the comparison
of the two measurement methods. The Bland–Altman analysis is a simple and accurate
way to quantify agreement between two variables and may help clinicians to compare a
new measurement method against another one or a reference standard. Experimental re-
sults [37] indicate high agreement and high correlation (more than 0.98 for heart rate and 0.7
for SpO2 extraction) between measurements by reference sensors and the motion-tolerant
adaptive algorithm [38]. The adaptive algorithm used in the reduction of MAs is the NLMS
algorithm due to its lower complexity compared with other techniques and immunity to
the fluctuation in the signal energy. One of the most commonly used algorithms is the
least-mean-squares (LMS) algorithm and its variations. A much higher correlation and
agreement were achieved after applying the adaptive algorithm on the raw signal for
SpO2 and heart rate. The correlation coefficient of SpO2 measurement after applying the
algorithm was 0.71 with a p-value, probability of obtaining a correlation as large as the
one obtained randomly, less than 0.00001 [37]. For the purpose of comparison, the discrete
saturation transform (DST) algorithm was also implemented using an adaptive filter of
order 32. The adaptive filter of order 32 means that the FIR filter is of the order of 32; hence
32 values are fed in the filter RAM [38,39]. Once the filter coefficients are adjusted, the con-
volution process is carried out, and the output is saved in the OUTPUT RAM [38,39]. Finite
impulse response (FIR) digital filters are widely used due to their crucial role in various
digital signal processing (DSP) applications. The FIR filter has been designed and realized
on FPGA for filtering the digital signal. FPGA is known as field programming gate arrays.
The DST algorithm isolates individual “saturation components” in the optical pathway,
which allows separation of components corresponding to the SpO2 level from components
corresponding to noise and interference, including motion artifacts [40]. The experimental
results of the motion-tolerant adaptive algorithm for wearable photoplethysmographic
biosensors validated reliable extraction of heart rate and oxygen saturation of more than
0.98 and 0.7, respectively, compared to reference stationary sensors in the presence of the
motion artifact [37].

A novel approach, “TifMA” (time–frequency spectrum for the detection of motion
artifacts) is based on using the time-frequency spectrum of PPG to first detect the motion
and noise artifact (MNA)-corrupted data and next discard the non-usable part of the
corrupted data. Two sequential classification procedures were included in the TifMA
algorithm [41]. The first classifier distinguishes between MNA-corrupted and MNA-
free PPG data. Once a segment of data is deemed MNA-corrupted, the next classifier
determines whether the HR can be recovered from the corrupted segment or not. A support
vector machine (SVM) classifier [41] was used to build a decision boundary for the first
classification task using data segments from a training dataset. Features from the time-
frequency spectra of PPG were extracted to build the detection model. Five datasets were
considered for evaluating TifMA performance: (1) and (2) were laboratory-controlled PPG
recordings from forehead and finger pulse oximeter (PO) sensors with subjects making
random movements, (3) and (4) were actual patient PPG recordings from UMass (University
of Massachusetts Amherst) Memorial Medical Center with random free movements, and
(5) was a laboratory-controlled PPG recording dataset measured at the forehead while the
subjects ran on a treadmill. The first dataset was used to analyze the noise sensitivity of the
algorithm. Datasets 2–4 were used to evaluate the MNA detection phase of the algorithm.
The results from the first phase of the algorithm (MNA detection) were compared to
results from three existing MNA detection algorithms (Table A6): the Hjorth [42], kurtosis–
Shannon entropy [43], and time-domain-variability–SVM approaches [44]. The TifMA
algorithm consistently provided higher detection rates than the other three methods, with
accuracies greater than 95% for all data [41]. Moreover, the TifMA algorithm was able to
pinpoint the start and end times of the MNA with an error of less than 1 s [41] in duration,
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whereas the next-best algorithm had a detection error of more than 2.2 s [41]. The final,
most challenging, dataset was collected to verify the performance of the algorithm in
discriminating between corrupted data that were usable for accurate HR estimations and
data that were non-usable. It was found that on average 48% of the data segments were
found to have MNAs, and of these, 38% could be used to provide reliable HR estimation [41].
This is good.

Despite the conventional NLMS, an algorithm with a small computational complexity
is required for wearable systems due to price, power, and system size limitations. In order
to overcome this drawback, an adaptive noise cancellation algorithm that can have similar
performance with low computational complexity was proposed [45]. An oscillator-based
adaptive notch filter (OSC-ANF) algorithm [46] was used to estimate the heart rate using the
PPG signal that passed through the MA reduction stage. The OSC-ANF algorithm is based
on a second-order infinite impulse response (IIR) band-pass filter and traces the strongest
frequency of the signal. To improve the tracking performance of the OSC-ANF algorithm
under highly noisy environments, the noise-robust OSC-ANF (NR-OSC-ANF) algorithm
that is derived by the noise-robust adaptive filter concept [47,48] was proposed [45]. In
addition, to improve MA reduction performance, an IIR band-pass filter was used [45].
In order to reduce the computational complexity, down-sampled PPG and accelerometer
signals that were resampled 125 Hz to 25 Hz were also used [45]. The noise-robust heart-rate
estimation algorithm has the best performance when the adaptive filter order is 21 (M = 21).
The noise-robust heart-rate estimation algorithm from the photoplethysmography signal
with low computational complexity algorithm can sufficiently remove motion artifacts even
with low computational complexity. In order to verify the performance of the heart-rate
estimation algorithm, it was compared in Tables A7 and A8 with other existing algorithms
using the IEEE Signal Processing Cup 2015 [45,49] database. The IEEE Signal Processing
Society organized an algorithm contest (IEEE Signal Processing Cup) where some of the
datasets were collected and used and again in Chon lab.

The estimated HR from the PPG signal matches (electrocardiogram) ECG-based HR
satisfactorily. The performances of other existing algorithms and the noise-robust heart-rate
estimation algorithm do not differ greatly (see Tables A7 and A8). Although this algorithm
does not have the best performance compared with other algorithms, it is considered to
be worthy of an algorithm for use in a wearable device because of its low computational
complexity. This algorithm requires only a few multiplications for preprocessing and NR-
OSC-ANF. The limits of agreement were [−3.97, 5.04] BPM in the Bland–Altman plot [45].

4. Conclusions

Although JOSS has been shown to be much more accurate than previous methods for
the reconstruction of heart rate from MA-contaminated PPG signals, the main disadvantage
of the method is it can merely provide smoothed HR reconstruction estimations. Neither
time-domain PPG signal reconstruction nor heart-rate variability analysis can be conducted
using JOSS or TROIKA. The SpaMA algorithm performs better in the first 12 datasets,
but the off-track error is large in other datasets that have stronger MAs during intense
arm movements. It was shown that the difference error is large when the real HR values
are between 50 and 80 in the NFEEMD algorithm. In evaluations using the MIT/BIH
arrhythmia database, the QRS detection algorithm failed to properly detect only 0.675
percent of the beats. Though experimental results indicate a high agreement and high
correlation for the motion-tolerant adaptive algorithm for wearable photoplethysmographic
biosensors, common errors in the experimentation were observed where the DST algorithm
reported a false reading due to motion artifacts. In the TifMA algorithm, 48% of the data
segment were found to have MNAs, and of these, 38% could be used to provide reliable HR
estimation showing that the TifMA algorithm is a better algorithm with a slight error and
comparable with other better algorithms such as those already described. Although the
noise-robust heart-rate estimation algorithm does not have the best performance compared
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with other algorithms, it is considered to be worthy of an algorithm for use in a wearable
device because of its low computational complexity.
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Appendix A

Table A1. SpaMA algorithm performance comparison.

Subject Dataset Activity
Type TROIKA [8] JOSS [9] WFPV [28] SpaMA [1]

E1 E2% E1 E2% E1 E2% E1 E2%

1 2.87 2.18 1.33 1.19 1.23 - 1.23 1.14

2 2.75 2.37 1.75 1.66 1.26 - 1.59 1.30

3 1.91 1.50 1.47 1.27 0.72 - 0.57 0.45

4 2.25 2.00 1.48 1.41 0.98 - 0.44 0.31

5 1.69 1.22 0.69 0.51 0.75 - 0.47 0.31

6 3.16 2.51 1.32 1.09 0.91 - 0.61 0.45

7 1.72 1.27 0.71 0.54 0.67 - 0.54 0.40

8 1.83 1.47 0.56 0.47 0.91 - 0.40 0.33

9 1.58 1.28 0.49 0.41 0.54 - 0.40 0.32

10 4.00 2.49 3.81 2.43 2.61 - 2.63 1.59

11 1.96 1.29 0.78 0.51 0.94 - 0.64 0.42

12 3.33 2.30 1.04 0.81 0.98 - 1.20 0.86

mean ± std 2.42 ± 0.8 1.82 ± 0.5 1.28 ± 0.9 1.02 ± 0.6 1.04 ± 0.5 - 0.89 ± 0.6 0.65 ± 0.4

13
14
15

Type (2)
3.58
9.66
2.31 -

3.41
7.29
2.73

4.25
9.80
2.21

16
17
18
19

2 (IEEE
Cup) Type (3)

4.93
3.07
2.67
3.11 -

3.18
3.01
4.46
3.58

2.11
2.52
3.23
3.98

20 Type (2) 2.10 - 1.94 1.66

21
22 Type (3) 3.22

4.35 -
2.56
3.12

2.02
3.28

23 Type (2) 0.75 - 1.72 1.97

mean ± std
Type (1, 2) 3.61 ± 2.2 - 3.36 ± 1.5 3.33 ± 2.2

mean ± std 2.27 ± 2.0 - 1.93 ± 2.0 2.07 ± 1.7

Subject Dataset Activity
Type TROIKA JOSS WFPV SpaMA

E1 E2% E1 E2% E1 E2% E1 E2%

24 0.88 0.91

25 1.03 0.83

26 1.10 0.90

27 1.64 1.54

28 3 Type (4) 1.41 1.12

29 (Chon Lab) 0.82 0.70

30 0.63 0.58

31 4.78 3.87

32 0.95 0.79
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Table A1. Cont.

Subject Dataset Activity
Type TROIKA [8] JOSS [9] WFPV [28] SpaMA [1]

33 0.62 0.52

mean ± std 1.38 ± 1.2 1.17 ± 1.0

Total: 1.86 ± 1.6 1.70 ± 1.8

mean ± std

Source: [1].

Table A2. Frequency domain HRV analysis comparison: PSD of SpaMA vs. reference.

Subject Correlation

LF 1 HF

1 0.99 0.98

2 0.99 0.96

3 0.99 0.95 *2

4 1.00 0.99

5 1.00 0.99

6 0.99 0.96 *

7 0.98 0.92 *

8 0.97 0.90 *

9 1.00 0.99

10 1.00 0.99

Mean 0.99 0.96
1 LF is (0.04–0.15) Hz, 2 HF is (0.15–0.4) Hz; (*) indicates significantly different (p-value > 0.05). Source: [1].

Table A3. Time domain HRV analysis comparison: SpaMA vs. reference HRV.

Subjects SDNN meanNN RMSSD pNN50

SpaMa Reference SpaMa Reference SpaMa Reference SpaMa Reference

1 2620.75 2566.47 10,480.89 10,480.72 33.24 18.05 0.001 0.020

2 2115.44 2079.58 9908.00 10,020.00 25.93 16.32 0.011 0.019

3 3173.73 3177.68 10,764.20 10,829.06 89.70 56.15 0.019 0.207

4 2517.78 2533.20 10,376.95 10,426.26 13.54 19.58 0.001 0.030

5 2654.42 2670.32 10,864.04 10,990.08 11.88 18.59 0.003 0.018

6 2012.53 1974.65 9737.35 9827.63 39.64 21.17 0.004 0.025

7 3056.36 2925.19 12,519.74 13,134.05 27.66 30.61 0.015 0.071

8 3133.76 2756.66 10,504.00 10,530.00 32.57 36.38 0.002 0.003

9 2195.08 2142.53 10,499.81 10,470.06 8.23 13.01 0.002 0.004

10 2454.57 2406.96 12,936.62 12,981.21 41.52 20.28 0.006 0.024

p-value >0.05 >0.05 >0.05 >0.05

Source: [1].



Eng. Proc. 2021, 10, 77 10 of 14

Table A4. AAE and AEP results on 23 datasets of compared to other algorithms.

ID
Activity

Type

TROIKA
[8] JOSS [9] SpaMA

[1]
CNAFSD

[31]
SPECTRAP

[32]
WFPV

[28] [33] NFEEMD
[2]

AAE
AEP%

AAE
AEP%

AAE
AEP%

AAE
AEP%

AAE
AEP%

AAE
AEP%

AAE
AEP%

AAE
AEP%

1 2.29 2.18 1.33 1.19 1.23 1.14 1.66 1.42 1.18 1.04 1.25 1.15 1.72
1.50 1.43 1.19

2 2.19 2.37 1.75 1.66 1.59 1.30 1.56 1.44 2.42 2.33 1.41 1.30 1.33
1.30 1.15 1.03

3 2.00 1.50 1.47 1.27 0.57 0.45 0.65 0.53 0.86 0.66 0.71 0.59 0.90
0.75 0.75 0.59

4 2.15 2.00 1.48 1.41 0.44 0.31 1.48 1.51 1.38 1.31 0.97 0.88 1.28
1.20 1.24 1.12

5 2.01 1.22 0.69 0.51 0.47 0.31 0.77 0.60 0.92 0.74 0.75 0.57 0.93
0.69 0.91 0.68

6 T0 2.76 2.51 1.32 1.09 0.61 0.45 1.12 0.90 1.37 1.14 0.92 0.75 1.41
1.20 1.25 0.99

7 1.67 1.27 0.71 0.54 0.54 0.40 0.72 0.60 1.53 1.36 0.65 0.50 0.61
0.50 0.79 0.60

8 1.93 1.47 0.56 0.47 0.40 0.33 0.91 0.80 0.64 0.55 0.97 0.83 0.88
0.80 0.63 0.53

9 1.86 1.28 0.49 0.41 0.40 0.42 0.42 0.36 0.60 0.52 0.55 0.48 0.59
0.50 0.58 0.56

10 4.70 2.49 3.81 2.43 2.63 1.59 2.35 1.45 3.65 2.27 2.06 1.29 3.78
2.40 2.48 1.48

11 1.72 1.29 0.78 0.51 0.64 0.42 1.45 0.94 0.92 0.65 1.03 0.68 0.85
0.60 0.89 0.58

12 2.84 2.30 1.04 0.81 1.20 0.86 0.78 0.60 1.25 1.02 0.99 0.70 0.71
0.50 1.37 0.91

13 - - - - 3.41 4.25 - - - - 3.54 4.08 - - 3.20 3.59
14 T1 6.63 8.76 8.07 10.9 7.29 9.80 7.71 10.6 4.89 6.29 9.59 12.2 - - 8.64 11.3
15 1.94 2.56 1.61 2.01 2.73 2.21 1.62 2.02 1.58 1.98 2.57 3.16 - - 1.98 2.57
16 1.35 1.04 3.10 2.69 3.18 2.11 3.10 2.68 1.83 1.49 2.25 1.87 - - 1.47 1.14
17 T2 7.82 4.88 7.01 4.49 3.01 2.52 7.00 4.49 3.05 2.00 3.01 1.99 - - 1.95 1.10
18 2.46 2.00 2.99 2.52 4.46 3.23 2.99 2.52 1.62 1.36 2.73 2.29 - - 2.34 1.95
19 1.73 1.27 1.67 1.23 3.58 3.98 1.67 1.23 1.24 0.92 1.57 1.15 - - 1.47 1.08
20 T1 3.33 3.90 2.80 3.46 1.94 1.66 2.45 3.00 2.04 2.23 2.10 2.41 - - 3.22 3.66
21
22 T2 3.41 2.43

2.69 2.12
1.88 1.32
0.92 0.74

2.56 2.02
3.12 3.28

1.81 1.26
0.92 0.74

2.49 1.81
1.16 0.92

3.44 2.45
1.61 1.26

-
- -

3.54 2.49
1.16 0.93

23 T1 0.51 0.59 0.49 0.57 1.72 1.97 0.49 0.57 0.66 0.79 0.75 0.88 - - 0.53 0.62

Mean ± SD

T0 AAE 2.34 +
0.83

1.28 +
0.90

0.89 +
0.60

1.16 +
0.55

1.50 +
0.86

1.02 +
0.41

1.25 +
0.87

1.12 +
0.51

1–12 AEP% 1.82 +
0.53

1.01 +
0.61

0.67 +
0.44

0.93 +
0.42

1.12 +
0.61

0.81 +
0.29

1.00 +
0.56

0.86 +
0.31

T1– AAE - - 3.36 +
1.51 - - 3.01 +

2.34 - 2.68 +
2.19

T2 AEP% - - 3.36 +
2.30 - - 3.07 +

3.17 - 2.76 +
3.01

13-23 AAE 3.19 +
2.32

3.05 +
2.52

3.53 +
1.48

2.98 +
2.45

2.13 +
2.77 2.96 + 246 - 2.63 +

2.30

Test AEP% 2.96 +
2.41

3.00 +
3.04

3.28 +
2.40

2.91 +
2.95

2.04 +
3.01

2.97 +
3.32 - 2.68 +

3.16

1–12

14-23 AAE 2.78 +
1.67

2.09 +
1.99

2.01 +
1.70

1.98 +
1.90

1.79 +
1.87

1.90 +
1.91 - 1.81 +

1.73

14-23 AEP% 2.34 +
1.73

1.92 +
2.27

1.85 +
2.09

1.83 +
2.20

1.52 +
1.22

1.79 +
2.44 - 1.68 +

2.27

All AAE - - 2.07 +
1.69 - - 1.97 +

1.90 - 1.87 +
1.71

1–23 AEP% - - 1.96 +
2.10 - - 1.89 +

2.43 - 1.77 ±
2.26

Source: [2].
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Table A5. The AAE results of 23 datasets at 25 Hz sampling frequency.

Dataset 1 2 3 4 5 6 7 8

AAE(BPM) 1.79 1.52 0.82 1.45 1.09 1.35 1.20 0.51
Dataset 9 10 11 12 13 14 15 16

AAE(BPM) 0.74 1.95 1.00 1.77 3.39 10.99 3.10 1.94
Dataset 17 18 19 20 21 22 23 Mean ± SD

AAE(BPM) 3.62 2.69 1.94 2.80 4.65 2.44 0.50 2.32 + 2.17

Source: [2].

Table A6. Mean ± Std. Detection of Transition Time (DTT) of TifMA and Other Methods.

Algorithm DTT (s)

TifMA 0.91 ± 0.59
Hjorth 2.17 ± 0.37

KSE 4.24 ± 2.42
TDV 2.75 ± 0.96

Source: [42].

Table A7. Error 1 results of the proposed algorithm and the existing algorithms.

Dataset TROIKA [8] JOSS [9]
NLMS +

OSC-ANFc
[50]

Combination
of Adaptive
Filters [51]

Noise-
Robust

Heart-Rate
Estimation
Algorithm

1 2.29 1.33 1.75 1.34 1.33

2 2.19 1.75 1.94 0.70 1.92

3 2.00 1.47 1.17 0.66 0.83

4 2.15 1.48 1.67 0.70 1.03

5 2.01 0.69 0.95 0.63 0.54

6 2.76 1.32 1.22 0.86 1.44

7 1.67 0.71 0.91 0.66 0.65

8 1.93 0.56 1.17 0.58 0.56

9 1.86 0.49 0.87 0.52 0.43

10 4.70 3.81 2.95 2.46 2.51

11 1.72 0.78 1.15 1.21 0.83

12 2.84 1.04 1.00 0.74 1.79

Av. ± std 2.34 ± 0.79 1.29 ± 0.86 1.40 ± 0.58 0.94 ± 0.52 1.16 ± 0.62
Source: [45].
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Table A8. Error 2 results of the proposed algorithm and the existing algorithms.

Dataset TROIKA [8] NLMS +
OSC-ANFc [50]

Combination of
Adaptive Filters

[51]

Noise-Robust
Heart-Rate
Estimation
Algorithm

1 1.90 1.59 1.17 1.06

2 1.87 1.99 0.70 2.18

3 1.66 1.02 0.57 0.72

4 1.82 1.51 0.63 0.97

5 1.49 0.75 0.49 0.41

6 2.25 1.05 0.67 1.23

7 1.26 0.72 0.50 0.50

8 1.62 1.04 0.50 0.50

9 1.59 0.76 0.46 0.38

10 2.93 0.93 1.56 1.59

11 1.15 0.79 0.80 0.57

12 1.99 0.79 0.55 1.21
Source: [45].
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