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Abstract: Recent studies show the possibility of using the sound information of an individual as the
basis of a biometric security system. This paper introduces a soft wearable system that includes a
miniaturized microphone and a wireless circuit for real-time, continuous detection and transmission
of sounds measured on the chest. The skin-wearable patch that is non-invasive, flexible, and skin-
friendly measures high-quality cardiac sounds to gather personalized biometric data. Convolutional
neural network-based machine learning provides a real-time classification of detected sounds for
biometric-based recognition of specific people. Creating such an identification key particular to an
individual is markedly easier and more effective than the existing biometric systems currently in use
because of its consistency and ability to be used continuously.

Keywords: cardiac monitoring; biometric security; soft; wearable patch

1. Introduction

The cardiovascular system supervises a large number of the major body systems
and provides crucial signals for body medicine. The heart provides sound data: the first
heart sound (S1), indicating the closure of mitral and tricuspid valves, and the second
heart sound (S2), representing the closure of the aortic and pulmonary valves [1]. These
sounds reflect important information, especially the mechanical activities of the heart.
When heart valves open and close, due to the blood turbulence in the valves, there are not
only sounds coming from the heart itself, but also mechanical vibrations on the chest wall.
Collecting such sounds and analyzing them are well-practiced techniques conducted by
medical professionals for monitoring these body systems, called auscultation [2], using the
collecting chest wall vibrations in what is called phonocardiography (PCG).

The idea of heart sound as a source of biometric information was first introduced by
Beritelli and Spadaccini, who use chirp-z transform (CZT) to extract various features, as
well as the Euclidean distance (ED), for the biometric classification of heart sounds [3].
The overall security level depends on using various feature extraction techniques and
classification networks, and will result in collecting information that includes the speed of
the recognition, correct recognition rate (CRR), which is the accuracy of the classification,
and finally, the kappa coefficient, which measures inter-rater reliability for qualitative
items, such as the biometric system, in this application [4]. Other biometrics have been
used in the past in their biometric locking system with a good amount of success, but
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each of them has its flaws. These biometrics include facial recognition, iris scanning,
retina scanning, fingerprint identification, voice recognition, hand geometry detection, and
others [5]. The cons of these biometric keys can be assessed according to the following
categories: susceptibility, replicability, danger in use, and the invasiveness of continuous
scanning. Table 1 shows the approximate error rate, replicability, permanence, and the
sensor types of the various biometrics used, as well as the cost for each sensor [6]. As shown
in the table, heart biometric information has the lowest cost with the highest permanence
and, most importantly, it is the only biometric that enables continuous verification for
the users, offering a reliable biometric for human identification based on vulnerability,
acceptability, usability, and uniqueness [7].

Table 1. Summary of various biometrics with their error rates [6], permanence, sensor type, and cost
of each sensor.

Biometric Continuous
Verification

Estimated
Error Rate Replicability Permanence * Sensor Type Cost

This Work
(Heart) Yes 1.7% No 4 MEMS microphone Low (<USD 5)

Fingerprint No 5.0% Yes 3 Optical, ultrasound, and
multispectral image Medium (>USD 50)

Signature
Recognition No 2.0% Yes 1

Digitizing tablets using
electromagnetic

transduction
Medium (>USD 100)

Hand
Geometry No 0.2% Yes 3 CCD (charge-coupled

device) camera High (>USD 1000)

Face
Geometry No Not

Specified Yes 3 High-resolution cameras,
thermal sensors High (>1000)

Voice
Recognition No 2.0% Yes 2

Acoustic sensors
(microphones),

non-acoustic sensors
(electromagnetic
motion sensor)

Medium (>USD 50)

Ear Shape No Not
Specified Yes 3 High-resolution camera

and 3D imaging
Not

Specified

Retina No 0.00001% Yes 4 Scanner using
infrared light High (>USD 1000)

Iris No 0.0008% Yes 4 Basic camera using
infrared light Medium (>USD 100)

Palm Veins No 0.88% Yes 3 Infrared light Medium (>USD 200)

* 5—Does not change for a lifetime, 4—Could be changed due to environment, disease, or uncontrollable factors,
3—Could be changed manually, 2—High possibility of change, 1—Could be changed frequently.

This paper focuses on the continuous biometric characteristics of the S1 and S2 peak
signals of heart sounds from the auscultation using a microelectromechanical (MEMS)
microphone, which uses a small silicon membrane on the backplate inside the chip that con-
verts vibrations from the sound pressure entering the microphone hole to the capacitance
or voltage, depending on the interface circuit structure [2]. The device integrated with the
microphone chip operates on a flexible printed circuit board (PCB) that is made of flexible
polyimide with copper traces in between. The bio-compatible silicone encapsulation on
the entire board, in combination with the battery, makes the continuous cardiac biometric
(CCB) patch as a continuous biometric security system.
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2. Materials and Methods
2.1. Proposed Continuous Cardiac Biometric System

The application of any device begins with the device itself— understanding its mechan-
ics, specifications, fabrication, and its range of abilities will enable a deeper understanding
of why the biometric security system application of the CCB patch will function better than
other digital microphones in the market. Figure 1a shows the flexible board itself, which is
rectangular, with a MEMS microphone hole on the back to gather sound. Nano-circuitry is
placed on the top layer of the board, including the microchips, such as the Bluetooth-low-
energy (BLE) microcontroller unit, analog-to-digital converter (ADC), pre-amplifier, and
the microphone. The analog signal acquired from the MEMS microphone travels through
the pre-amplifier to increase the gain and filter out in the first-stage lower and higher cut-off
frequencies. It then moves to the ADC, becoming converted to a digital signal to feed the
BLE microcontroller and send data wirelessly via Bluetooth to mobile devices.
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Figure 1. System Overview. (a) Summary of a wearable patch on the chest collecting heart sounds,
(b) 3D view of the device with components, and (c) 2D side-view representation of the device.

Beyond the actual circuitry of the device, there are other aspects of it that aid in
data collection and purity. The silicone elastomer encasement plays a massive role in
deflecting unwanted sound waves. The base layer of silicone is a sticky, cohesive layer on
the underside of the board that keeps the entire body of the board attached to the skin. The
middle layer of the elastomer encases the circuitry on top of the board to prevent excess
external vibrations. The final layer of silicone gel acts similar to a reusable adhesive that is
cured onto a band-aid-like fabric and placed over the top of the microphone island section
of the board. All the layers are shown in Figure 1b,c to aid the understanding of the entire
device. This final silicone gel adhesive allows clothes to move freely over the top of the
device with no interference from the device itself, and allows for an extreme ambulatory
nature. The CCB patch attaches itself to the skin so well that in daily movement, unwanted
sound waves, often denoted as interference or noise, are minimized. This is because the
small and discreet device flexes and bends with the body. All these details about the
mechanics of the device allow it to be accurate, efficient, subtle, and simple. This makes
medical applications obvious—its ambulatory nature and ability to record continuously
and remotely, despite being in such a small package, is its claim to fame.
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2.2. Signal Processing and Feature Extraction

The integrated design, with the individuality of a heart sound, functions as the biomet-
ric key, with the CCB patch taking in the heart sounds and transmitting that information
to a mobile device connected via Bluetooth. Leveraging the optimized two-stage signal
processing, which involves a band-pass filter and a zero-phase filter, the heart sounds
collected by several different people can have a distinct pattern. Since the heart sound
ranges from 20 Hz to 200 Hz, the first-stage bandpass filter was designed to cut off the raw
signal using a low-pass and a high-pass filter, and feed the signal into the zero-phase filter
stage. A zero-phase filter is a linear phase filter with a phase slope, α = 0. Every filter has
its own impulse response, and its real impulse response is even. Even means that the signal
is symmetric around 0 in terms of the time segments of a signal.

There are some causal filters, meaning the impulse response is 0 before the time is
0, but for zero-phase, it cannot be causal. Yet, in this application of processing sound
signals, since the waveform audio file format (WAV) outputted from the CCB patch is in
stereo, multiple signals from multiple channels contribute to the output; hence, causality
is not a requirement. Finally, the frequency response for the zero-phase filter is H(ejωt),
which is a real and even function of radian frequency ω, and needs to be larger than
0 in the filter passband to be a zero-phase filter [8]. This is especially important in the
biometric system for heart sounds because a lot of noise contributes to the signal, and
unwanted peaks in noise could disrupt the CRR of the biometric information. For the signal
to be cleaner and discreet, and for more accurate biometric information in a continuous
monitoring environment, motion artifacts and noise should be eliminated through the pass
and attenuation of the wanted frequency along with phase filtering. As shown in Figure 2a,
the Kaiser window was used in the zero-phase filter for a better sidelobe amplitude at the
same approximation error with lowpass FIR to minimize the round of noise error with the
best stability and simplicity as possible.

After the two-stage filtering using bandpass and zero-phase filters, the filtered signals
would then be preprocessed with labels indicating each participant’s S1 and S2 heart sound
peaks and fed into a machine learning program using a convolutional neural network
where a profile of an individual’s heart sound would be created. After several samples, the
machine will have made a profile against which to compare future incoming signals to. If
the incoming signal matches that of a profile in the database, the system would respond
appropriately and, conversely, would also appropriately respond to a mismatch.
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matrix of heart sound classification, and (d) flow chart of the machine learning model.

3. Results and Discussion

For each participant, the CCB patch was placed on Erb’s point in auscultation, which is
approximately the center of the heart [9]. After collecting a minute of heart sounds for each
patient via Bluetooth using a mobile device, the autosaved recordings in comma-separated
value (CSV) files were fed into the two-stage filtering MATLAB code. Figure 2b shows each
participant’s heart sound data after filtering. Each amplitude and waveform was different,
along with the time differences between each S1 and S2 peak due to the various heart rates
of participants. These extracted features would then be labeled.

Leveraging the preprocessing code to label each S1 and S2 peak of each participant,
the labeled CSV files were fed into the convolutional neural network (CNN)-based machine
learning for classification to train the model to recognize each participant’s heart sound
waves, given that they have distinct patterns and shapes for each S1 and S2 pair segment
in the time series. Since the average beats per minute of the participants were around
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60 beats per minute, 60 samples were fed through the algorithm for each participant’s class.
Figure 2c shows the confusion matrix of each participant’s distinct waveform trained in
the model to show that the machine indeed identifies each participant’s heart sounds. As
shown in Figure 2d, several series of layers in the machine learning model were used.

As shown from the accuracy, or CRR, of the proposed biometric, which was 98.3%, the
heart sounds biometric is a solution to nearly all these problems, even though it has an error
rate of 1.7% and has room for improvement where it can reach towards the error rate of
the retina/iris biometric systems. However, the proposed heart biometric system exceeded
the approximate error rate of fingerprint, signature, and voice recognition [6]. There is a
very low possibility of a change in heart sound for an individual over a sampled period.
Heart sounds are nearly impossible to forge, unless someone had the ability to clone a heart
that was the same as another individual’s and place it inside of a chest cavity that would
reverberate the exact same way. There is also no danger in the use of the device. The largest
and most obvious advantage is the ability to continuously monitor the heart sound of an
individual for continuous identification across multiple levels of security. The idea is to
eliminate the need to re-scan at every access point where another biometric system would
require yet another scan. The CCB patch is an efficient, adaptable, discreet, and accurate
piece of technology designed for analyzing the biometric sounds of the body, specifically
the heart.

4. Conclusions and Outlook

In this work, a biometric system based on cardiac sounds is developed using a
wearable patch offering a continuous security system for the users. Heart sounds from
10 participants were collected using the device, and after going through the two-stage
filtering, unique waveforms were achieved for individuals with the CNN-based machine
learning model. As a result, the accuracy of the CNN classifier is 98.3%. Using this classifi-
cation, the model could be implemented in the real-time application for the CCB system
when worn by users. Because of its cross-disciplinary abilities and novel technologies, the
CCB patch has a high likelihood of outperforming other biometric systems for the purpose
of a biometric security system.
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article/10.3390/ecsa-8-11336/s1.

Author Contributions: All authors conceived, designed, and wrote the paper. All authors have read
and agreed to the published version of the manuscript.

Funding: We acknowledge the support from the IEN Center for Human-Centric Interfaces and
Engineering at Georgia Tech. This study was partially supported by the Institute of Information &
Communications Technology, Planning & Evaluation (IITP) grant funded by the Korean government
(MSIT) (2021-0-01517).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
approved IRB protocol (H21038) from Georgia Tech. All subjects gave their informed consent.

Data Availability Statement: Deidentified participant data will be available from the corresponding
author on formal request.

Conflicts of Interest: Georgia Tech has a pending U.S. patent application related to the work
described here.

References
1. Li, S.; Li, F.; Tang, S.; Xiong, W. A Review of Computer-Aided Heart Sound Detection Techniques. BioMed Res. Int. 2020, 2020,

1–10. [CrossRef] [PubMed]
2. Lee, S.H.; Kim, Y.-S.; Yeo, W.-H. Advances in Microsensors and Wearable Bioelectronics for Digital Stethoscopes in Health

Monitoring and Disease Diagnosis. Adv. Healthc. Mater. 2021, 10, 2101400. [CrossRef] [PubMed]
3. Beritelli, F.; Serrano, S. Biometric Identification Based on Frequency Analysis of Cardiac Sounds. IEEE Trans. Inf. Forensics Secur.

2007, 2, 596–604. [CrossRef]

https://www.mdpi.com/article/10.3390/ecsa-8-11336/s1
https://www.mdpi.com/article/10.3390/ecsa-8-11336/s1
http://doi.org/10.1155/2020/5846191
http://www.ncbi.nlm.nih.gov/pubmed/32420352
http://doi.org/10.1002/adhm.202101400
http://www.ncbi.nlm.nih.gov/pubmed/34486237
http://doi.org/10.1109/TIFS.2007.902922


Eng. Proc. 2021, 10, 73 7 of 7

4. Zhao, Z.; Shen, Q.; Ren, F. Heart Sound Biometric System Based on Marginal Spectrum Analysis. Sensors 2013, 13, 2530–2551.
[CrossRef] [PubMed]

5. Ortega-Garcia, J.; Bigun, J.; Reynolds, D.; Gonzalez-Rodriguez, J. Authentication gets personal with biometrics. IEEE Signal
Process. Mag. 2004, 21, 50–62. [CrossRef]

6. Young, C.S. Chapter 14-Physical Security Controls. In Information Security Science; Young, C.S., Ed.; Syngress: Oxford, UK, 2016;
pp. 317–338.

7. Phua, K.; Chen, J.; Dat, T.H.; Shue, L. Heart sound as a biometric. Pattern Recognit. 2008, 41, 906–919. [CrossRef]
8. Humayun, A.I.; Ghaffarzadegan, S.; Feng, Z.; Hasan, T. Learning Front-end Filter-bank Parameters using Convolutional Neural

Networks for Abnormal Heart Sound Detection. In Proceedings of the 2018 40th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018.

9. Kolb, F.; Spanke, J.; Winkelmann, A. Auf den Spuren des Erb’schen Auskultationspunkts: Rätsel gelöst. DMW-Dtsch. Med.
Wochenschr. 2018, 143, 1852–1857. [CrossRef] [PubMed]

http://doi.org/10.3390/s130202530
http://www.ncbi.nlm.nih.gov/pubmed/23429515
http://doi.org/10.1109/MSP.2004.1276113
http://doi.org/10.1016/j.patcog.2007.07.018
http://doi.org/10.1055/a-0596-4733
http://www.ncbi.nlm.nih.gov/pubmed/30562820

	Introduction 
	Materials and Methods 
	Proposed Continuous Cardiac Biometric System 
	Signal Processing and Feature Extraction 

	Results and Discussion 
	Conclusions and Outlook 
	References

