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Abstract: The development of electrocardiogram (ECG) wearable devices has increased due to its
applications on ambulatory patients. ECG signals provide useful information about the heart behavior,
but when daily activities are monitored, motion artifacts are introduced producing saturation of
the signal, thus losing the information. The typical resolution used to record ECG signals is of
maximum 16-bit, which might not be enough to detect low-amplitude potentials and at the same
time avoid saturation due to baseline wander, since this last issue demands a low-gain signal chain.
A high-resolution provides a more detailed ECG signal under a low gain input, and if the signal
is corrupted by motion artifact noise but is not saturated, it can be filtered to recover the signal of
interest. In this work, a 24-bit ADC is used to record the ECG, and a new method, the rest ECG cycle
template, is proposed to remove the baseline wander. This new method is compared to high-pass
filter and spline interpolation methods in their ability to remove baseline wander. This new method
presumes that a user is able to establish a rest ECG during his/her daily activities.

Keywords: motion artifact; high-resolution microcontroller; portable ECG; signal processing; baseline
wander removal

1. Introduction

The electrocardiogram (ECG) provides information about a patient heart electrical
behavior, and it is frequently measured placing electrodes on the skin surface [1]. The
ECG can be measured by wearable sensors, allowing detection to be done during physical
activity [2]. At any rate, the raw ECG signal might not be useful when noise affects
the information contained. Therefore, denoising an ECG signal is necessary before an
appropriate interpretation can be made.

ECG is susceptible to noise from different sources, baseline wander (BW) being one
that is commonly induced by the patient’s breathing and movement activity. BW is an
undesired low-frequency component that would interfere in the signal interpretation. The
removal methods for this type of noise normally include polynomial splining and high-pass
frequency filters [3].

The usage of high-pass filters is a widely applied method to remove BW from a signal.
However, they might remove useful low-frequency information, as well as depress the P
and T waves; therefore, other methods to remove BW are preferred [4]. Other methods look
to replicate the BW trend to subtract it from the ECG signal, leaving the signal of interest as
useful information. Some methods to replicate the BW trend include spline interpolation,
whose accuracy increases as the number of interpolated points increases [5]. Additionally,
independent of the BW removal method, using lower resolution ADCs (of typically 16-bit
or less) results in saturation of the ECG signal due to large motion artifacts.
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With a methodology for a rapid prototyping of an ECG device, motion artifacts
inherent in mobile health devices, such as the ones occurring from wearable ECG sensors,
were previously studied using high-resolution measure devices [6]. The objective of this
present work was to use this same rapid prototyping platform to identify a new method to
replicate the BW trend using an ECG rest cycle template and compare it with a high-pass
filter and spline interpolation methods, as a consideration of processing a noisy signal
acquired by a high-resolution (24 bits) wearable system.

The ECG noisy signal was processed by the three methods: using a resting cycle
template, spline interpolation, and second-order Butterworth filter. Statistics and visual
observations on the resulting signal were assessed after each method was applied. This
new resting cycle template method presents a good performance and presumes that a user
is able to establish a rest ECG during his/her daily activities.

2. Materials and Methods

In this section, the signal acquisition and processing methods are described, as well as
the human volunteer specifications.

2.1. Rapid Prototyping Platform and Signal Acquisition

The signal used in this work was acquired from a human volunteer on a treadmill
using a system built on a previous work [6]: Figure 1 shows the block diagram of the
wearable device test platform used to acquire the signal. The AD8232 board used was the
cardiac monitor provided by the manufacturer Sparkfun [7]. The C8051F350 microcontroller
was used on a development kit provided by the Slicon Labs company. These modules and
the HC-05 module serve as a breakout box for rapid prototyping.
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Figure 1. Block diagram of high-resolution rapid prototyping platform for wearable devices.

Subject specifications: healthy male, height 1.77 m, 23 years old, weight of 61 kg,
electrical axis of the heart position: 120 degrees, DII registered lead: IN+ corresponding
right arm (RA), IN-corresponding right leg (RL), and corresponding reference left arm
(LA) [6].

The signal was acquired during a stationary gait with sudden movement to induce BW.
The volunteer started on a rest position on their feet before the beginning of the stationary
gait. Arduino serial monitor software was used to acquire the signal on a computer using a
115,200 baud rate, with a 180 Hz sampling rate for the internal C8051F350 ADC, and using
the AD8232 with a 100× gain [6]. The recorded signal to be processed is shown in Figure 2.
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Figure 2. Original recorded signal.

2.2. Signal Processing

In this section, each signal processing method to remove the BW is described. To
compare each method’s effectiveness, the root-mean-square (RMS) value and standard
deviation (σ) were compared with the RMS value and σ of the original signal to calcu-
late the attenuation level it provided, assuming the only noise contribution is the vari-
ation of the BW. The RMS value and σ were calculated with the MATLAB rms and std
functions, respectively.

2.2.1. Method 1. Second-Order High-Pass Butterworth Filter

A second-order high-pass Butterworth filter was designed with the Filter Designer
MATLAB application [8]. The cut frequency was set to 1 Hz. Figure 3 shows the filter’s
magnitude response.
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2.2.2. Method 2. Spline Interpolation

A trend vector was generated by a spline interpolation using samples from the original
recorded signal. These sample points are chosen mostly in the segment between the T and
P waves where the ECG is in the isoelectric phase, where the ideal value of the baseline
signal should be zero. The points were manually selected and are shown in Figure 4.
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Using the MATLAB spline function, the trend curve was generated as shown in
Figure 5.
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Figure 5. Generated trend curve by spline interpolation.

The processed signal was obtained by subtracting the trend curve vector from the
original signal.

2.2.3. Method 3. Using an ECG Rest Cycle Template

To design this method, it is assumed that, once the BW is removed, every ECG wave
shape during the recording was equal in the signal. Therefore, an ECG wave during a
resting position when no BW was present was used as a template to build an expected
signal (ES).

The selected ECG wave to be used as template was the first ECG wave in the original
signal and is shown in Figure 6, since the signal capture started on a rest position. However,
it is still a debate regarding what is the best way to construct the template since there are
several complete rest cycles before motion artifacts occur, and it is assumed that, during
his/her daily activities, the user can establish a resting period at will.
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Figure 6. ECG rest cycle wave template.

The desired signal was built by placing the template (shown in Figure 6) along a
vector in the same positions where every ECG wave in the original signal is present, being
centered by the R peak (highest value) of the wave. The R peaks were manually detected
now, but, for future implementation, there are several automated algorithms that can
achieve the peak detection. Figure 7 shows the result of the expected signal, with template
copies moved to the positions of the R peak of the original signal.
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Figure 7. Expected signal.

By subtracting the expected signal from the original signal, the motion artifact was
obtained (Figure 8a). A small amount of high frequency noise appears, but after applying
a second-order low-pass Butterworth filter with a 1 Hz cutoff frequency to the motion
artifact, a curve that replicates the BW results, as shown in Figure 8b.
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The processed clean ECG signal is obtained now by subtracting the curve that repli-
cates the BW (Figure 8b) from the original signal.

3. Results and Discussion

Figure 9 shows the resulting signal of each method, as well as the original signal.
Visually, the signal that results from method 3 is that less affected by BW. However, the
comparison is made using their RMS value and σ, as stated in Section 2.2. Table 1 shows
the numeric results of the comparison.

Table 1. This table shows the comparison between each method described in this work. The RMS
value and standard deviation (σ) of each processed signal are compared with the RMS value and
standard deviation (σ) of the original signal. The attenuation that each method provides is shown.

Method RMS σ RMS Ratio σ Ratio RMS Attenuation (dB) σ Attenuation (dB)

Original signal 160,230 160,238 1.00 1.00 0.00 0.00
Method 1 81,722 71,643 0.51 0.45 −2.92 −3.50
Method 2 87,154 84,682 0.54 0.53 −2.64 −2.77
Method 3 59,670 58,629 0.37 0.37 −4.29 −4.37
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signal; (c) Method 2 resulting signal; (d) Method 3 resulting signal.

As observed in Table 1, using an ECG rest cycle (method 3) as a template to remove
BW from a noisy ECG signal provides a higher attenuation of the BW than applying a
second-order high-pass Butterworth filter, as well as providing a higher attenuation than
using a generated trend curve by spline interpolation to remove BW.

A more accurate trend curve can be generated if more points from the original signal
are used. However, since the points are limited to sections of isoelectric potential where
no ECG waves are present, BW would not be completely removed. Using a second-
order Butterworth high-pass filter provides a higher attenuation of BW than using spline
interpolation.

There are some limitations of the study. Even though the technique was found to
per-form well, the tests were applied on one subject only, so larger studies are necessary to
generalize from the results. In addition, it is not yet clear how well this technique would
work in arrhythmias, when there are different QRS morphologies in a recording. Perhaps,
the possibility to acquire an ECG template on the fly (without BW noise) will be necessary,
in order to work with multiple QRS morphologies. Furthermore, since there is no ground
truth ECG signal against which to compare the recovered signal, the RMS value and σ

metrics are simply approximations.

4. Conclusions

The usage of wearable devices to record an ECG signal from a patient in daily activities
can easily corrupt the signal of interest with motion artifacts. However, with adequate
post-processing, a smooth and useful ECG signal can be achieved by removing the BW, as
the method of ECG rest cycle template presented. This wearable device method required
a high-resolution 24-bit ADC and a low gain AD8232 analog input, together with the
capability for the patient to set a resting moment. The usage of a QRS peak detector is
recommended to automate the build of the expected signal, which is the key to correctly
establish the motion artifacts.
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