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Abstract: Human Activity Recognition (HAR) has been widely addressed by deep learning tech-
niques. However, most prior research applied a general unique approach (signal processing and deep
learning) to deal with different human activities including postures and gestures. These types of
activity typically have highly diverse motion characteristics, which could be captured with wearable
sensors placed on the user’s body. Repetitive movements such as running or cycling have repeti-
tive patterns over time and generate harmonics in the frequency domain, while postures such as
sitting or lying are characterized by a fixed position, with some positional changes and gestures or
non-repetitive movements being based on an isolated movement usually performed by a limb. This
work proposes a classifier module to perform an initial classification among these different types of
movements, which would allow for applying afterwards the most appropriate approach in terms of
signal processing and deep learning techniques for each type of movement. This classifier has been
evaluated using the PAMAP2 and OPPORTUNITY datasets using a subject-wise cross-validation
methodology. These datasets contain recordings from inertial sensors on hands, arms, chest, hip, and
ankles, collected in a non-intrusive way. In the case of PAMAP2, the baseline approach for classifying
the 12 activities using 5-s windows in the frequency domain obtained an accuracy of 85.26 ± 0.25%.
However, an initial classifier module could distinguish between repetitive movements and postures
using 5-s windows reaching higher performances. Afterward, specific window size, signal format,
and deep learning architecture were used for each type of movement module, obtaining a final
accuracy of 90.09 ± 0.35% (an absolute improvement of 4.83%).

Keywords: human activity recognition; wearable sensors; classifier module; inertial signals; con-
volutional neural networks; deep learning; repetitive movements; gestures; postures; PAMAP2;
OPPORTUNITY

1. Introduction

Human motion modeling using wearable sensors is an important field [1,2] with
different applications, such as Human Activity Recognition (HAR) [3–6], biometrics [7],
or health [8]. Concerning physical activity classification, human movements are usually
modeled by a system that recognizes these activities. However, each movement presents
specific characteristics in terms of motion pattern and duration. A previous work [4]
proposed a human motion typology to apply the most appropriate signal processing and
deep learning architecture depending on the type of movement. For example, raw signals
of repetitive movements such as running or cycling were processed by a Convolutional
Neural Network (CNN), while raw signals of gestures such as closing a drawer were
processed by a Recurrent Neural Network (RNN). This work highlighted the requirement
of developing an initial module to automatically identify the type of movement before
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selecting the best signal processing and deep learning strategy to discriminate between
movements inside the same group.

The purpose of this work is to develop this initial module as a classifier of types of
movements. In addition, this work compares the baseline approach of classifying all the
activities in one step to the approach of using the initial classifier module to distinguish
among the types of movements and, afterward, applying specific signal processing and
deep learning techniques for movements inside the same group.

2. Materials and Methods

This section provides a description of the datasets used in the experiments, the signal
processing, the deep learning approach, and the cross-validation methodology used in
this study.

2.1. Datasets

For this work, we have used the PAMAP2 dataset [9] and the OPPORTUNITY
dataset [10]. The combination of these two datasets contains a wide variety of physi-
cal activities, including repetitive movements, non-repetitive movements (gestures), and
postures. Moreover, PAMAP2 includes 27 signals recorded under laboratory conditions,
while OPPORTUNITY contains 113 signals recorded under wild conditions.

The PAMAP2 dataset includes recordings of 12 different physical activities: nine
repetitive movements (walking, running, cycling, Nordic walking, ascending stairs, de-
scending stairs, vacuum cleaning, ironing, and rope jumping) and three postures (lying,
sitting, standing). These activities were performed by nine subjects, who wore three Inertial
Measurement Units (IMUs) with a tri-axial accelerometer, gyroscope, and magnetometer.
These sensors collected data sampling at 100 Hz and were placed on the dominant hand,
chest, and ankle.

The OPPORTUNITY dataset contains recordings of 21 different physical activities:
one repetitive movement (walking), 17 gestures (open door 1, open door 2, close door 1,
close door 2, open fridge, close fridge, open dishwasher, close dishwasher, open drawer
1, close drawer 1, open drawer 2, close drawer 2, open drawer 3, close drawer 3, clean
table, drink from a cup, and toggle switch) and three postures (lying, sitting, and standing).
These activities were performed by four subjects, who wore five RS485-networked XSense
IMUs located in a jacket, two InertiaCube3 on each foot, and 12 Bluetooth acceleration
sensors on the limbs. Each IMU includes a tri-axial accelerometer, a tri-axial gyroscope,
and a tri-axial magnetic sensor sampling at 32 Hz.

2.2. Signal Processing

We implemented a signal processing module to generate windows of physical activity.
We divided the recordings into overlapped windows using a Hamming function and a
shift of 0.25 s between consecutive windows. We evaluated the classification performance
at the window level, so if an activity transition occurred within a window, the system tried
to recognize the activity with the greater presence in the window. We considered different
window sizes (3, 5, 10, 15, 20, and 25 s) but maintained the same shift (0.25 s). For each
window size, we analyzed both time and frequency domain signals as inputs to our deep
neural networks. In the first case (raw data), the time samples included in each window
directly fed the deep neural network. In the second case, the inputs were the module of the
Fast Fourier Transform (FFT) coefficients of each window. These coefficients represented
the spectrum from 0 to 50 Hz or 16 Hz (half of the sampling frequency). We decided
to limit the spectrogram to 25 Hz for PAMAP2 because the energy in human activities
mostly concentrates in low frequencies. Regarding OPPORTUNITY, we considered the
frequency range from 0 to 16 Hz. Figure 1 represents the signal processing performed to
the acceleration signals in both time and frequency domains for 5-s windows.
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Figure 1. Signal processing performed on the inertial signals. 

2.3. Deep Learning 
A deep learning structure with a feature learning subnet and a classification subnet 

was used to recognize the different types of movements. This architecture is composed of 
two convolutional layers with intermediate max-pooling layers for feature learning and 
three fully connected layers for classification. Dropout layers were included after convo-
lutional and fully connected layers to avoid overfitting. The architecture used for the 
PAMAP2 classifier module is represented in Figure 2. 

 
Figure 2. Deep learning architecture used in this work for the PAMAP2 classifier module. 

In this architecture, ReLU was used as the activation function in intermediate layers 
to reduce the impact of the gradient vanishing effect and SoftMax is the activation func-
tion in the last layer to perform the classification task. The optimizer was fixed to the root-
mean-square propagation method [11] with a learning rate of 0.001. In this work, the fol-
lowing hyperparameters of the architecture were optimized for each dataset using a vali-
dation subset. For the optimization process, we first evaluated the influence of the hy-
perparameters of the convolutional and fully connected layers. After that, we fixed those 
parameters and we scanned several values for the number of epochs (from 2 to 100), the 
batch size (50, 100 and 150) and the dropout fraction (from 0.2 to 0.5). The main hyperpa-
rameters adjusted were the number of convolutional layers (2), number (32) and size (1 × 
5) of convolutional kernels, pooling kernel size (1 × 2), numbers of neurons in the fully 
connected layers (128 and 64), the number of epochs (14), batch size (100), and dropout 
fraction (0.3). 

Regarding the classification of activities within each type of movement, this work 
applied and optimized the architectures of the previous work [4] that proposed the typol-
ogy of types of movements: convolutional and fully-connected layers architecture for re-
petitive movements and postures and convolutional and recurrent layers architecture for 
gestures.  

Figure 1. Signal processing performed on the inertial signals.

2.3. Deep Learning

A deep learning structure with a feature learning subnet and a classification subnet
was used to recognize the different types of movements. This architecture is composed
of two convolutional layers with intermediate max-pooling layers for feature learning
and three fully connected layers for classification. Dropout layers were included after
convolutional and fully connected layers to avoid overfitting. The architecture used for the
PAMAP2 classifier module is represented in Figure 2.
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In this architecture, ReLU was used as the activation function in intermediate layers
to reduce the impact of the gradient vanishing effect and SoftMax is the activation function
in the last layer to perform the classification task. The optimizer was fixed to the root-
mean-square propagation method [11] with a learning rate of 0.001. In this work, the
following hyperparameters of the architecture were optimized for each dataset using a
validation subset. For the optimization process, we first evaluated the influence of the
hyperparameters of the convolutional and fully connected layers. After that, we fixed
those parameters and we scanned several values for the number of epochs (from 2 to
100), the batch size (50, 100 and 150) and the dropout fraction (from 0.2 to 0.5). The main
hyperparameters adjusted were the number of convolutional layers (2), number (32) and
size (1 × 5) of convolutional kernels, pooling kernel size (1 × 2), numbers of neurons in
the fully connected layers (128 and 64), the number of epochs (14), batch size (100), and
dropout fraction (0.3).

Regarding the classification of activities within each type of movement, this work
applied and optimized the architectures of the previous work [4] that proposed the typology
of types of movements: convolutional and fully-connected layers architecture for repetitive
movements and postures and convolutional and recurrent layers architecture for gestures.

2.4. Cross-Validation

In this study, we used the Subject-Wise Cross-Validation (CV) strategy, where the
recordings of each subject were included in separated subsets. This way, recordings from
the same subject did not appear in training and testing subsets in the same experiment.
For both datasets, we performed four folds, using two folds to train the deep learning
architecture, one fold to adjust its main parameters (using the validation subset), and
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the remaining fold to test the system. This strategy followed a round-robin approach to
evaluate the whole dataset, and the presented results in this work are the average values
obtained throughout the CV procedure. In the case of OPPORTUNITY, since there are only
four subjects, the CV procedure becomes a Leave-One-Subject-Out CV strategy, where the
validation and testing subsets only contain data from one subject in each iteration.

3. Results

Repetitive movements are characterized by the presence of harmonics in the frequency
domain; in contrast, postures and gestures only have information at low frequencies.
However, it is possible to perform a specific gesture such as drinking a cup of coffee while
a subject is walking or while sitting. For these reasons, an approach consisting of two
steps could be applied when dealing with gestures. The first step of the classifier should
distinguish movements in a higher level between two groups: repetitive movements and
gestures during repetitive movements versus postures and gestures during postures. In
this step, the FFT coefficients were able to distinguish between these two groups. During
the second step, a specific module could distinguish between the types of movement within
each previous module. For these subgroups, the FFT coefficients could be appropriate to
distinguish the gestures while performing another repetitive movement or posture using
the signals from the different limbs. Afterward, for each type of movement, we followed the
configurations of the previous work [4] that proposed the typology of types of movements
to boost the recognition performance: raw data and long windows (25 s) for repetitive
movements, raw data and short windows (3 s) for gestures and FFT and long windows
(10 s) for postures. Particularizing this approach to the datasets used in this work, Figures 3
and 4 show the overview of the final systems of PAMAP2 and OPPORTUNITY, respectively,
including the window size and input format for each module. These figures include the
type of movement recognition performance in green boxes and the activity classification
performance in orange boxes. In case of PAMAP2, since there were no gestures, an initial
classifier was used to distinguish between repetitive movements and postures using FFT
coefficients as inputs to the deep learning architectures. The performance of the repetitive
movements module of the OPPORTUNITY dataset was the maximum since there was only
examples from walking activity.
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Table 1 summarizes the main results of this work for the PAMAP2 and OPPORTUNITY
datasets. Final activity classification accuracy and confidence intervals (CI) are included in
the tables. Baseline system (one step) performances were obtained using short windows
(3–5 s) and optimized signal processing and deep learning techniques for each dataset: FFT
and convolutional and fully connected layers architecture for PAMAP2 and raw data and
convolutional and fully connected layers architecture for OPPORTUNITY. The performance
of the proposed system with two classifiers has been obtained considering the performance
of the modules and the number of examples per type of movement. For example, Equation
(1) was applied for computing the final performance of the PAMAP2 dataset, where N1 is
the number of examples of repetitive movements, N2 is the number of examples of postures
and N is the total number of examples. The results suggest that it is possible to significantly
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increase the recognition performance when using specific modules to distinguish the
movement through the movement typology.

Accuracy (%) =
Classifier module Acc.

100
∗ (Rep. Acc. ∗N1 + Post. Acc.∗N2)

N
(1)
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Table 1. Activity classification accuracy for PAMAP2 and OPPORTUNITY datasets.

Experiment
Test Accuracy (%)

PAMAP2 OPPORTUNITY

Direct system 85.26 ± 0.25 67.33 ± 0.33
System with classifier 90.09 ± 0.35 68.45 ± 0.66

4. Discussion and Conclusions

The classifier module developed in this work allows for recognizing types of move-
ments to apply specific signal processing and deep learning techniques for each type of
movement afterward. The results suggest that using short windows (3–5 s) to discriminate
between different types of movements is required since a higher decision resolution might
skip examples of gestures. After that, it is recommended to increase the window size when
classifying repetitive movements or postures because the recognition performance will
improve. In this sense, the window size becomes a crucial optimization parameter that
depends on the type of movement. For example, when an athlete is performing physical
exercise during lengthy series, long analysis windows could be directly used to obtain
high recognition performance. However, if a person is performing unknown activities, a
lower decision resolution is required to detect the type of movement beforehand. In this
regard, a trade-off between decision resolution and performance is critical for leveraging
the capabilities of HAR systems.
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