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Abstract: Operational modal analysis (OMA) is required for the maintenance of large-scale civil
structures. This paper developed a novel methodology of non-contact-based blind identification of
the modal frequency of a vibrating structure from its video measurement. There are two stages in
the proposed methodology. The first stage is extracting the motion data of the vibrating structure
from its video using a complex steerable pyramid. In the second stage, the principal component
analysis combined with analytical mode decomposition is used for modal frequency separation from
the motion data. Numerical validation of the methodology on a 10 DOF model is presented. The
application of the proposed methodology on the London Millennium Bridge is also presented.

Keywords: vibration measurement; video camera; multi-scale decomposition; complex steerable
pyramids; principal component analysis; analytical mode decomposition

1. Introduction

In structural health monitoring (SHM), modal analysis of structures is considered an
important aspect. The operational modal analysis (OMA) relies only on the response data
collected from the sensor attached to the structure, independent of the force excitation [1].
Modal parameters depend on the accuracy of the data collected from the sensors attached
to the structure. Sensors commonly used for the OMA are contact accelerometers, adding
additional mass to the structure. These mass loading effects can be corrected, but they
are not accurate [2]. Physically attached sensors have proved that spatial resolution of
the measurement critically limits the effectiveness of standard mode shape-based damage
detection and localization methods [3]. Non-contact methods of OMA overcame the
drawbacks of sensor-based measurement. Microwave interferometers are used to analyze
the interference reflected off the vibrating target surface for displacement response [4].
Laser Doppler vibrometer (LDV) measures the velocity of a point projected by a focused
laser beam, using the Doppler shift between the incident and scattered light returning to
the measuring instrument [5–7]. LDV provides accurate results and can be used to find the
modal parameters of structures that are inaccessible. However, microwave interferometers
and LDV are expensive. Other methods through computer vision techniques, such as
digital image correlation and 3-dimensional point tracking techniques, can estimate modal
parameters from a video measurement. However, these techniques require a speckle
pattern/markings placed on the structure [8,9].

An alternative non-contact measurement system is to employ the computer vision
technique using a digital high-speed video camera which is low-cost, convenient and
desirable for high-resolution measurement. Generally, civil structures, such as bridges and
other large structures, have a low natural frequency, thus cameras capable of recording
video at 30 frames per second (FPS) can be used. The video should have neither distur-
bances nor artifacts. The spatial domain consists of pixel information, such as intensity
levels, whereas the temporal part contains the framerate of image sequences in a video.
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Pixels of each frame contain the motion data of the objects in the video, which can be
magnified using a phase-based video motion magnification technique that can magnify
the local motions of objects and translate the noise present in the video [10,11]. It enables
referring to the subtle motions, which are hard to perceive with the naked eye. Each frame
in the video is decomposed into multi-scale and multi orientations using complex steerable
pyramids [12]. The multi-scale decomposition of the video frames enables measuring the
phase information of each frame, which can be manipulated to magnify the motion in
the video. Phase-based video motion magnification works as a basis for many methods,
such as modal identification of simple structures [13] and OMA of a light pole-viaduct
system [12,14].

Saravanan et al. [12] used phase-based video motion magnification for the identifi-
cation of modal frequencies of the system. The method in [12] requires the approximate
frequency range of the target structure for modal frequency identification. The current
work overcame this difficulty by using statistical and analytical methods. In this paper, a
computer vision-based vibration measurement of the structures using PCA and analytical
mode decomposition (AMD) methods for blindly identifying the modal frequencies. Firstly,
the current methodology is validated on a 10 degree of freedom (DOF) numerical model
and the proposed methodology is applied to the practical field measurement videos of the
London Millennium Bridge, and natural frequencies are extracted. The obtained results are
in good agreement with the reference sensor values.

2. Methodologies

The two main methodologies are implemented in this study to obtain the modal fre-
quencies from a camera-based video measurement. Figure 1 demonstrates the flowchart of
the proposed method for OMA using non-contact video measurements with comprehensive
procedures essential in each step.
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2.1. Phase Extraction Using Complex Steerable Pyramids

The time history response of a structure can be measured from a video, as the frames
contain the temporally displaced intensity of a pixel represented by I(x+d(x,t)), where x
is the pixel coordinate and d(x,t) represent spatially local and temporally varying motion.
The multi-scale and multiband decomposition technique used to extract the phase d(x,t)
encoded in the I(x+d(x,t)), is known as the complex steerable pyramid. According to
Simoncelli and Freeman [11], the steerable pyramid algorithm initially divides a given
image into a high-frequency part and a low-frequency part. The bandpass-oriented filters
bp are then applied sequentially to the low-frequency image followed by down sampling.
It forms a pyramid, including high-frequency and low-frequency residuals and levels with
certain scales and orientations.

The phase d(x,t) of each pixel is extracted by constructing the complex steerable
pyramids. This phase contains a temporal mean 2πωx; after removing the temporal mean,
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we get d′(x, t) = 2πωd(x, t) which can be expressed by modal superposition as a linear
combination of modal responses.

d′(x, t) = φ(x)q(t) =
n

∑
i=1

τi(x)qi(t) (1)

where φ(x) is a mode shape matrix with τi(x) as the ith mode shape and q(t) is the modal
response vector with qi(t) as the ith modal coordinate. Equation (1) is overcomplete with
high spatial dimension (due to large number of pixels) and low modal dimension over the
complete model, thus the modal identification problem cannot be solved directly [15]. The
dimension of the phase matrix is reduced by PCA and then AMD is used for separating
the signals.

2.2. Principal Component Analysis

The obtained motion matrix is large in terms of the matrix’s data being represented
by its principal components. Thus, dimension reduction is accomplished by PCA. The
singular value decomposition of the motion matrix (d′) is,

d′ = UΣVT =
n

∑
i=1

σiuivi (2)

where Σ is a diagonal matrix containing t (t is the number of elements) diagonal elements,
σi as the ith singular value (σ1 ≥ . . . ≥ σi ≥ . . . ≥ σT) and U and V are the matrices of
the left and right singular vectors obtained by eigenvalue decomposition (EVD) of the
covariance matrices of d′ (refer to Equations (3) and (4))

d′d′T = UΣ2UT (3)

The rank of d′ is r if the number of non-zero singular values is r. σi is directly related to
the ith principal direction vector of d′. If its mass matrix is proportional to its uniform mass
distribution identity matrix for a lightly damped structure, then, principal directions will
converge to modal shape direction [15]. The structure’s active modes, under broadband
excitation, are projected onto the r principal components. Empirically, it is observed that
principal active components are less compared with the matrix’s spatial dimension. Thus
PCA significantly reduces the dimension of the motion matrix by projecting it linearly onto
a small number of principal components.

ζ = UT
r d′ (4)

where ζ is a matrix containing principal components of d′. PCA also reserves the matrix ζ;
d′ is obtained by using,

d′ = Urζ (5)

These principal components contain the information of the dominant frequency modes.
The average of these principal components is taken as input for analytical mode decomposition.

2.3. Analytical Mode Decomposition

AMD uses a signal decomposition theorem based on a Hilbert transform. This method
separates general time series into time functions whose Fourier spectra are non-vanishing
over two mutually exclusive frequency ranges. A bisecting frequency separates it with
multiple steps. An original time series with multiple closely spaced frequency components
is decomposed into many signals, each dominated by a single frequency component [16].
Let x(t) denote a real-time series of n significant frequency components (ω1, ω2, . . . , ωn) all
positive in L2(−∞,+∞) of the real-time variable t. It is decomposed into n signals xi

(d)(t)
(i = 1,2, . . . , n) whose Fourier spectra are equal to X̂(ω) over n mutually exclusive fre-
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quency ranges—(|ω| < ωb1), (ωb1 <|ω| < ωb2), . . . , (ωb(n−2) <|ω| < ωb(n−1)), and
(ωb(n−1) < |ω|).

x(t) =
n

∑
i=1

x(d)i (t) (6)

Here, X̂(ω) is the Fourier transform of x(t), ω represents a frequency variable, and
ωb ∈ (ωi, ωi+1) (i = 1, 2, . . . , n − 1) are n − 1 bisecting frequencies. Each signal has a
narrow bandwidth in the frequency domain and is be determined by,

x(d)i (t) = g(t)− g(t), . . . , x(d)n (t) = x(t)− gn−1(t) (7)

gi(t) = sin(ωbit)H[x(t) cos(ωbit)]− cos(ωbit)H[x(t) sin(ωbit)] (8)

where i = 1, 2, ... , n − 1, go(t) = 0 and H represents the Hilbert transform.

3. Validation of Proposed Method on Numerical Model

The proposed method, which uses PCA and AMD to identify the modal frequencies, is
applied to a 10-DOF model for validating the technique. The twelve DOF model is excited
with an initial velocity at the twelfth DOF, and the output is collected at all the 10-channels
in terms of displacement y(t). The 10-DOF system is represented as masses connected with
springs, as shown in Figure 2.
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Figure 2. Schematic representation of a 10-DOF dynamic numerical model.

Among twelve masses, the first (m1) and last (m3) masses are 2 kg, and all other
masses are 1 kg, as represented in Figure 2. The stiffness of all the springs used is 20 KN.
The damping matrix is taken proportional to the mass matrix. The first four theoretical
mode shapes are used to construct the new response y(t). The new displacement response
y(t) is the input for the PCA. The PCA gives the number of components through the
eigenvalues of the covariance matrix of displacement data, and it identified that there are
only four active components. The results are shown in Figure 3 and Table 1.
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Figure 3. Four different modes of the numerical model identified by the proposed method. (a) Mode 1
frequency-5.3 Hz, (b) mode 2 frequency-10.1 Hz, (c) mode 3 frequency-13.9 Hz, (d) mode 4 frequency-
17.7 Hz.

Table 1. Comparison of the estimated frequency value with theoretical values.

Mode
Frequency (Hz)

Error %
Theoretical Estimated

1 6.25 6.30 0.8
2 11.45 11.50 0.09
3 15.62 15.60 0.13
4 20.03 20.00 0.15

4. Implementation of Proposed Method on Full-Scale Video Measurement of London
Millennium Bridge

The proposed method is implemented in full-scale field measurement to obtain the
vibration response of the London Millennium footbridge, also known as the wobbly
bridge [17]. It is a steel suspension bridge, as shown in Figure 4, and it shows the cropped
frame of a video [18] to the region of interest used for the blind identification of modal
frequency. The cropped video has a resolution of 480 p, 480 pixels in width, and 60 pixels in
height. The number of frames used is 600, with a frame rate of 30 FPS. The bridge swaying
occurs as the pedestrians’ walking frequencies and the bridge’s natural frequency range
matches well. Only three frequencies are detected as the pedestrians walking patterns
might have only three dominant frequencies. The three modes are identified from the EVD
plot from the implementation of the PCA-AMD algorithm. The modal coordinates and
their frequency values are presented in Figure 5. The modal coordinates are not accurate
and are non-decaying due to the pedestrian’s movement. Table 2 shows the comparison
between the estimated results with the sensor data, and they are in good agreement with
higher than 99% accuracy. The results have revealed that the proposed method can be
extended to other spontaneous robust non-contact OMA structures.
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Table 2. Comparison of the estimated frequency value with sensor values.

Mode
Frequency (Hz)

Error %
From Ref. [17] Estimated

1 0.77 0.769 0.13
2 1.54 1.53 0.65
3 2.32 2.31 0.43

5. Conclusions

This study develops a hybrid output-only OMA algorithm that uses PCA and AMD
to blindly extract the modal frequencies and modal coordinates from line-of-sight video
measurement of structures. The 10-DOF dynamic numerical model validation resulted in
higher than 99% accuracy in detecting the modal frequencies. The proposed methodology
is implemented on practical full-field videos recorded on the London Millennium Bridge,
resulting in modal frequencies with an accuracy of 99%. The modal coordinates are non-
decaying in nature for the bridges because of the external loading factors.

Supplementary Materials: The poster presentation is available online at https://www.mdpi.com/
article/10.3390/ecsa-8-11298/s1.
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