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Abstract: In this work, an X-ray diffraction study of fluorine-functionalized thiosemicarbazone lig-
ands and their corresponding cyclometallated compounds is discussed. The results are in agreement
with previous characterization by IR spectroscopy, 1H and 19F NMR spectroscopy. Suitable crystals
were obtained for a thiosemicarbazone ligand and a cyclometallated compound. The crystal structure
analyses are in accordance with the proposed structures: a fluorine-functionalized thiosemicarbazone
ligand and a cyclometallated compound in which the thiosemicarbazone is a tridentate [C, N, S]
ligand. A comparative study of bond distances and angles is shown, providing information about
the coordination of the ligand to the metal center.
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1. Introduction

In this work, fluorine-thiosemicarbazone ligands were used to synthesize cyclometal-
lated palladium compounds. The fluorine functionality increases their solubility, which is
one of the main issues when dealing with this type of species [1,2].

The ligands are widely used in coordination and organometallic chemistry due to the
number of different heteroatoms and their versatile coordination to metal centers [3], gen-
erating a wide range of compounds. In addition, these ligands are relevant in the biological
field; the free ligands themselves possess a certain degree of biological activity [4,5], usually
enhanced by coordination to one or more metal atoms [6,7].

Furthermore, cyclometallated compounds are a large family of complexes that con-
tain a chelate ring comprising a coordinated heteroatom–metal bond or a σ carbon–metal
bond [8,9]. The metalated atom may be an aromatic [10,11] or alkenyl [12] sp2 carbon
or an sp3 carbon [13]. Many of these compounds are used in catalysis, and they pro-
duce very good results in cross-coupling reactions with carbon–carbon bond formation
(Suzuki–Miyaura [14,15] and Mizoroki–Heck [16,17]) and carbon–nitrogen bond formation
(Buchwald–Hartwig [18,19]). Likewise, their biological activity has been shown to be quite
high, and it has been tested for a huge variety of metals and ligands [20–23].

2. Results and Discussion

An X-ray diffraction study of a thiosemicarbazone ligand and the ensuing palladium
cyclometallated product is discussed (see Scheme 1). The results agree with a previous
characterization by IR, 1H NMR and 19F NMR spectroscopies [24]. In addition, a structural
study and comparison between the two structures were carried out.
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Scheme 1. Reaction sequence leading to the synthesis of cyclometallated complexes containing fluor 
atoms. 

2.1. X-ray Diffraction Study 
Suitable crystals for compounds were obtained by slow evaporation of a DMSO−ac-

etone (3a) or chloroform (4b) solution, shown in Scheme 2. The X-ray diffraction study 
showed the proposed structures. The structures were solved by direct methods and re-
fined by full-matrix least-squares on F2. Hydrogen atoms were included in calculated po-
sitions. Refinement converged at a final R1 = 0.0302 and wR2 = 0.0712 (compound 3a) and 
R1 = 0.0299 and wR2 = 0.0625 (compound 4b) with allowance for thermal anisotropy of all 
non-hydrogen atoms. The structure solution and refinement were carried out using the 
program OLEX2 [25]. 
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Scheme 2. Compounds 3a and 4b were studied by X-ray diffraction study. 

2.1.1. Compound 3a 
Compound 3a crystallizes in a monoclinic system, P21/n space group. The unit cell 

contains four molecules of thiosemicarbazone (see Figure 1). Crystal data is shown in Ap-
pendix A (Table A1). 

 
Figure 1. Molecular structure of ligand 3a. Thermal ellipsoids are shown at 50% probability level. 

Scheme 1. Reaction sequence leading to the synthesis of cyclometallated complexes containing fluor
atoms.

2.1. X-ray Diffraction Study

Suitable crystals for compounds were obtained by slow evaporation of a DMSO−acetone
(3a) or chloroform (4b) solution, shown in Scheme 2. The X-ray diffraction study showed
the proposed structures. The structures were solved by direct methods and refined
by full-matrix least-squares on F2. Hydrogen atoms were included in calculated posi-
tions. Refinement converged at a final R1 = 0.0302 and wR2 = 0.0712 (compound 3a) and
R1 = 0.0299 and wR2 = 0.0625 (compound 4b) with allowance for thermal anisotropy of all
non-hydrogen atoms. The structure solution and refinement were carried out using the
program OLEX2 [25].
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Scheme 2. Compounds 3a and 4b were studied by X-ray diffraction study.

2.1.1. Compound 3a

Compound 3a crystallizes in a monoclinic system, P21/n space group. The unit cell
contains four molecules of thiosemicarbazone (see Figure 1). Crystal data is shown in
Appendix A (Table A1).
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The structure shows thiosemicarbazone in the thionic form, with E conformation [26],
probably due to the intramolecular interaction (2.179 Å) between the imine nitrogen and
the thioamide proton, shown in Figure 2a.
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Figure 2. (a) Intramolecular interactions between F(1)-H and N(1)-H. (b) Deviation of the phenyl ring
from the thiosemicarbazone plane.

In addition, intramolecular interaction (2.378 Å) between the fluorine atom and the
imine methyl group is observed. Consequently, in Figure 2b, the aromatic ring is turned
away from the thiosemicarbazone plane, with a 34.34◦ deviation.

2.1.2. Compound 4b

Compound 4b crystallizes in a triclinic system, P-1 space group. The unit cell contains
two cyclometallated molecules and eight chloroform molecules. Crystal data is shown in
Appendix A (Table A2).

The thiosemicarbazone acts as a tridentate ligand (see Figure 3a), generating two five-
membered chelate rings, and the compound shows a tetranuclear structure in Figure 3b,
with the ligands assuming an antiparallel arrangement and being perpendicular to each other.

In one of the monomers, the palladium center (Pd1) is surrounded by the ortho
aromatic carbon of the phenyl ring (C5), the imine nitrogen (N1) and two sulfur atoms (S1
and S2) exhibiting two different bonds with palladium: Pd−Schelate (S1) and Pd−Sbridging
(S2).

As in the thiosemicarbazone ligand, an intramolecular interaction of ca. 2.5 Å (Figure 4)
is observed between the fluorine atom and the imine methyl group. In this case, the
aromatic ring is unable to rotate due to metallation, so the methyl group displays an
eclipsed conformation.
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2.1.3. Comparison between Bond Distances (Å) and Angles (◦)

A comparative study of bond distances (Table 1) and angles (Table 2) between the
thiosemicarbazone ligand 3a and the cyclometallated compound 4b was carried out.
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Table 1. Comparison between bonds in compounds 3a and 4b.

Bond 3a/Å 4b/Å

N(1)-C(7) 1.2870(18) 1.304(3)
C(9)-N(2) 1.3677(18) 1.297(3)
C(9)-S(1) 1.6816(14) 1.807(3)
C(9)-N(3) 1.3297(18) 1.361(3)
C(5)-C(6) 1.399(2) 1.424(4)

Table 2. Comparison between angles in compounds 3a and 4b.

Angle 3a/◦ 4b/◦

C(5)-C(6)-C(7) 121.14(12) 116.3(2)
N(1)-N(2)-C(9) 117.90(11) 114.1(2)
N(2)-C(9)-S(1) 119.57(11) 125.16(19)
N(2)-C(9)-N(3) 115.62(12) 120.6(2)
N(3)-C(9)-S(1) 124.81(11) 114.08(18)

The N(1)-C(7) and C(5)-C(6) bonds are somewhat longer in the cyclometallated com-
pound due to the back-bonding of the palladium metal to the N(1) and the C(5) atoms,
respectively.

The C(9)-N(2) and C(9)-S(1) bond differences are because of metallation; since it occurs
in the thiolic form of the thiosemicarbazone, tautomerization of the C(9)=S(1) double bond
is thus needed.

The C(9)-N(3) bond is slightly longer, probably due to the tautomerization of the
thionic bond and the coordination of the sulfur atom.

The N(2)-C(9)-S(1), N(2)-C(9)-N(3) and N(3)-C(9)-S(1) angles change upon going to the
cyclometallated compound due to the tautomerization and the coordination of the sulfur
atom to palladium.

The C(5)-C(6)-C(7) and N(1)-N(2)-C(9) are smaller due to the formation of the five-
membered chelate ring upon cyclometallation.

2.1.4. Palladium Bonds and Angles in Compound 4b

The bond distances with palladium are in accordance with those found in similar
complexes [27–29] and angles with a square-planar geometry of the metal center (see
Table 3).

Table 3. Distance bonds (Å) and angles (◦) around palladium metal center.

Bond /Å Angle /◦

Pd(1)-N(1) 1.996(2) N(1)-Pd(1)-C(5) 81.24(9)
Pd(1)-C(5) 2.003(2) N(1)-Pd(1)-S(1) 83.31(6)
Pd(1)-S(2) 2.3060(6) C(5)-Pd(1)-S(2) 94.39(8)
Pd(1)-S(1) 2.3729(6) S(2)-Pd(1)-S(1) 100.81(2)

N(1)-Pd(1)-S(2) 174.68(6)
C(5)-Pd(1)-S(1) 164.07(8)

3. Conclusions

• X-ray structural analysis was carried out for a thiosemicarbazone ligand and its
cyclometallated palladium derivative.

• A comparative study allowed the determination of variations in bond distances and
angles in the structure of the ligand after the cyclometallation process.

• The metal atom displays the typical square-planar geometry for palladium.
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Appendix A

Table A1. Crystal data and structure refinement for 3a.

Identification code 3a

Empirical formula C11H14FN3S

Formula weight 239.31

Temperature 100(2) K

Wavelength 0.71073 Å

Crystal system Monoclinic

Space group P21/n

Unit cell dimensions
a = 5.8663(2) Å, α = 90◦

b = 19.5573(6) Å, β = 105.0047(10)◦.

c = 10.5485(3) Å, γ = 90◦.

Volume 1168.96(6) Å3

Z 4

Density (calculated) 1.360 Mg/m3

Absorption coefficient 0.266 mm−1

F(000) 504

Crystal size 0.240 × 0.127 × 0.119 mm3

Theta range for data collection 2.083 to 26.366◦.

Index ranges −6 ≤ h ≤ 7, −24 ≤ k ≤ 24, −13 ≤ l ≤ 13

Reflections collected 32894

Independent reflections 2399 [R(int) = 0.0527]

Completeness to theta = 25.242◦ 100.0%

Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 2399/0/147

Goodness-of-fit on F2 1.050

Final R indices [I > 2sigma(I)] R1 = 0.0302, wR2 = 0.0712

R indices (all data) R1 = 0.0372, wR2 = 0.0751

Largest diff. peak and hole 0.246 and −0.266 e·Å−3
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Table A2. Crystal data and structure refinement for 4b.

Identification code 4b

Empirical formula C64H52Cl12F4N12Pd4S4

Formula weight 2044.41

Temperature 100(2) K

Wavelength 0.71073 Å

Crystal system Triclinic

Space group P-1

Unit cell dimensions
a = 13.6814(4) Å, α = 87.1620(10)◦

b = 15.1512(4) Å, β = 79.4790(10)◦

c = 19.9092(5) Å, γ = 64.1110(10)◦

Volume 3648.25(17) Å3

Z 2

Density (calculated) 1.861 Mg/m3

Absorption coefficient 1.585 mm−1

F(000) 2016

Crystal size 0.180 × 0.160 × 0.070 mm3

Theta range for data collection 2.082 to 28.342◦.

Index ranges −18 ≤ h ≤ 18, −20 ≤ k ≤ 20, −26 ≤ l ≤ 26

Reflections collected 112138

Independent reflections 18195 [R(int) = 0.0390]

Completeness to theta = 25.242◦ 99.9%

Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 18195/0/1020

Goodness-of-fit on F2 1.049

Final R indices [I>2sigma(I)] R1 = 0.0299, wR2 = 0.0625

R indices (all data) R1 = 0.0390, wR2 = 0.0666

Largest diff. peak and hole 2.352 and −1.613 e·Å−3
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