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Abstract: Currently, mitochondria are considered as an attractive universal target in the development
of new anticancer drugs. These organelles are essential in energy production, the regulation of
cell death pathways, the generation of reactive oxygen species, as well as in the maintenance of
calcium homeostasis. Various approaches are being developed to deliver biologically active com-
pounds into the mitochondria of tumour cells, including the conjugation of cytotoxic substances
with mitochondria-targeted lipophilic cations. Among the currently known low molecular weight
lipophilic cationic molecules, (E)-4(1H-indol-3-ylvinyl)-N-methylpyridinium iodide (F16) is of great
interest. This mitochondria-toxic cationic compound with luminescent properties is selectively ac-
cumulated in mitochondria and can selectively trigger the apoptosis and necrosis of tumour cells,
making it an attractive targeted agent for theranostic use. Meanwhile, betulinic acid, an available nat-
ural pentacyclic triterpenoid, has been considered as a promising scaffold for the development of new
anticancer agents in recent years. The antitumour effect of this natural product arises from it affecting
the mitochondria of tumour cells through the formation of reactive oxygen species. The present
article details of an efficient synthesis of a novel multifunctional hybrid agent in which a cytotoxic
triterpenoid, betulinic acid, is carbon-carbon bonded to the cationic F16 fragment at the C-2 position of
ring A through a phenylethynyl spacer. The starting substrates in the synthesis were the C-2 propynyl
derivative of betulinic acid and N-aryl-substituted 4-(1H-indol-3-ylvinyl)-pyridine. The derivative of
betulinic acid with a terminal acetylenic group was prepared by the reaction of C-alkylation with
propargyl bromide of potassium enoxytriethylborate generated from betulonic acid. To obtain the
N-aryl-substituted analogue of F16, a CuI-catalyzed Ullmann-Goldberg reaction was applied. The
synthesis of the target conjugate was successfully completed by the cross-coupling of the terpene and
heterocyclic components according to Sonogashira in the presence of the CuI/Pd(PPh3)2 catalyst.

Keywords: betulinic acid; cross-coupling reaction; mitochondria; mitochondria-targeting cations;
F16

1. Introduction

The available plant metabolite, betulinic acid, and its semisynthetic derivatives rep-
resent an important class of biologically active substances and are in high demand in
medicinal chemistry and pharmacological research (Figure 1). The antitumour effect of
natural betulinic acid has been established in vitro against human tumour cells of various
types [1,2]. This molecule, unlike many known cytostatics, directly affects the mitochondria
of tumour cells, triggering the process of the apoptosis of cancer cells [3,4]. The antitumour
activity of betulinic acid combines well with low systemic toxicity. However, the poor
bioavailability of this triterpene, associated with poor solubility in an aqueous medium,
prevents it reaching the target in vivo and achieving the desired therapeutic effect [5,6]. In
recent years, the conjugation of natural triterpene acids with cationic lipophilic molecules
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with low molecular weight has been efficiently applied to enhance the bioavailability and
antitumour activity [7]. These positively charged small molecules easily penetrate into mito-
chondria due to the large value of the membrane potential of mitochondria when compared
to the potential of the cell membrane (∆Ψmito = 150–180 mV, ∆Ψplasma = 30–60) [8,9].
The prospects of involving mitochondria-targeted cationic fragments as a “vector” for the
selective delivery of cytotoxic triterpenoids into the mitochondria of cancer cells have been
demonstrated in the study of conjugates of triterpenic acids with triphenylphosphonium
cation or with rhodamine B [10].
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Recently, a novel mitochondria-toxic cationic compound, (E)-4(1H-indol-3-ylvinyl)-N-
methylpyridinium iodide (F16), was discovered (Figure 1).

This delocalized lipophilic cation is selectively accumulated in the mitochondrial
matrices of various tumour cell lines [11,12]. Its high concentration in mitochondria results
in cell death associated with the arrest of the cell cycle, interruption of the mitochondrial
respiratory chain, a decrease in the intracellular level of ATP, and the induction of apoptosis.
The fluorescent properties of F16 offer good prospects for the application of this compound
as a fluorescent probe for imaging tumours. Furthermore, the hybridization of cytotoxic
agents with this delocalized cation can contribute to the development of new theranostic
agents for cancer therapy. Thus far, however, unlike the triphenylphosphonium cation
widely known today, only a few studies have been reported on the potential of F16 as a
means of delivering biologically active compounds to malignant transformed cells [13,14].

Earlier, we reported on the first synthesis of conjugates of triterpene acids with a
fragment of the cationic molecule, F16, in the work [15]. In the tests involving different
tumour cell lines, the new hybrid compounds exhibited significantly higher cytotoxicity
(≈100–200 times) than the initial betulinic acid, along with acceptable selectivity in the
relationship between tumour and healthy cells. It is noteworthy that the F16 pharma-
cophore fragment in the resulting conjugates was linked to the 3-OH or 17-COOH groups
of the triterpene nucleus through an ester function, which may be unstable to the action of
enzymes under biochemical conditions. In this regard, here we detail the development of
an effective approach to the synthesis of a novel hybrid molecule “triterpenoid—F16”, in
which the nitrogen atom of the F16 indole ring is linked to the A ring of betulinic acid at
the C-2 position through a phenylethynyl spacer.

2. Materials and Methods
2.1. Chemistry

The starting compounds, betulinic acid and the reagents: BEt3 (95%), KN(SiMe3)2
(potassium bis(trimethylsilyl)amide, 1 M solution in THF), propargyl bromide, DME
(dimethoxyethane), pyridine-4-carbaldehyde, Tri-n-butylphosphine, 1,4-diiodobenzene,
piperidine-2-carboxylic acid, CuI, DMF (dimethylformamide), PdCl2(PPh3)2, CuI, Et3N,
and CH3I were purchased from Acros Organics (Geel, Belgium) and used without any
further purification. Syntheses and spectral data of the compounds 1, 2, 3a, 5 and F16a
have been published, as previously reported [16–19].
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2.1.1. Synthesis of 1-Iodo-4-{(E)-4-[2-(1H-indol-3-yl)vinyl]-pyridine}phenyl (3)

The 1,4-diiodobenzene (660 mg, 2 mmol) was added to a suspension of (E)-4-[2-(1H-
indol-3-yl)vinyl]-pyridine (220 mg, 1 mmol), K2CO3 (105 mg, 0.8 mmol), CuI (12 mg,
0.06 mmol), piperidine-2-carboxylic acid (15 mg, 0.12 mmol) in dry DMF (5 mL) and stirred
at 110 ◦C for 24 h. Then the mixture was cooled to room temperature and evaporated under
reduced pressure. The residue was chromatographed on silica gel, using hexane/EtOAc
(from 15:1 to 1:1) and recrystallized with EtOAc to give pure product 3 as an orange-yellow
powder (211 mg, 0.5 mmol, 50%). IR (film) νmax 1633 (CH=CH), 1593, 1491, 1456 (Ph) cm−1;
[α]20

D 0 (c 0.17, CHCl3); m.p. 186–188 ◦C (EtOH); 1H-NMR (500 MHz, MeOD): δ 8.43 (2H, br
s, H-17, H-21), 7.98 (1H, br s, H-10), 7.81 (2H, d, J = 6.5 Hz, H-3, H-5), 7.54–7.20 (9H, m, H-2,
H-6, H-7, H-11, H-12, H-13, H-18, H-20, and H-15 or H-16), 7.03 (1H, d, J = 16.5 Hz, H-15 or
H-16) ppm; 13C-NMR (125 MHz, CDCl3/MeOD): δ 149.4 (C-17, C-21), 147.0 (C-19), 139.2
(C-3, C-5), 138.9 (C-14), 136.8 (C-1), 128.6 (C-15 or C-16), 127.2 (C-9), 126.7 (C-7), 126.4 (C-2,
C-6), 124.0, 123.0, 122.1, 121.0, 120.7 (C-10, C-11, C-12, C-15 or C-16, C-18, and C-20), 116.1
(C-8), 111.2 (C-13), 91.8 (C-4) ppm; Analysis calculated for C21H15IN2: C, 59.73; H, 3.58.
Found: C, 60.16; H, 4.12; MS (HRMS): m/z calculated for C21H15IN2 [M + H]+ 423.0353;
found 423.0330.

2.1.2. Synthesis of Methyl 2α-{[(E)-4-(1H-indol-3-yl-vinyl)-N-methyl-pyridinium
iodide]phenylpropynyl}-3-oxolup-20(29)en-28-oate (4)

A mixture of triterpenoid 2 (110 mg, 0.2 mmol), iodophenyl derivative 3 (84.5 mg,
0.2 mmol), PdCl2(PPh3)2 (7.0 mg, 0.01 mmol), and CuI (3.8 mg, 0.02 mmol) were dissolved
in anhydrous Et3N/DMF (4 mL, 1:1). The resulting mixture was stirred at room temperature
for 1 h in an argon atmosphere, until starting material was observed by TLC. Then the
reaction was quenched by addition of water and extracted with EtOAc (3 × 10 mL).
The combined organic extracts were dried with MgSO4 and concentrated under reduced
pressure. To a solution of crud light brown product (86 mg, 0.1 mmol) in dry DMF
(2 mL) CH3I (0.06 mL, 1 mmol) was added and stirred at room temperature in an argon
atmosphere for 12 h. Then the solvent was evaporated under reduced pressure. The residue
was chromatographed on silica gel, using CH2Cl2/MeOH (from 30:1 to 10:1), to obtain
pure product 3 as an orange powder (67 mg, 0.07 mmol, 71%). IR (film) νmax 1716 (C=O),
1636 (CH=CH), 1609, 1509, 1458 (Ph) cm−1; [α]D

19 −13.3 (c 0.06, CHCl3); m.p. 196–198 ◦C
(EtOH); 1H-NMR (500 MHz, MeOD): δ 8.49 (2H, d, J = 6.5 Hz, H-20′, H-24′), 8.09–8.07 (2H,
m, H-13′, H-18′ or H-19′), 8.00–7.96 (3H, m, H-21′, H-23′, H-10′), 7.52–7.44 (5H, m, H-5′,
H-6′, H-8′, H-9′, H-16′), 7.33–7.31 (2H, m, H-14′, H-15′), 7.20 (1H, d, J = 16.0 Hz, H-18′ or
H-19′), 4.80 (3H, s, N+CH3), 4.72, 4.58 (2H, both br s, H-29), 3.68 (3H, s, OCH3), 3.01–2.99
(2H, m, H-2, H-19), 2.80 (1H, dd, J = 15.0, 5.0 Hz, Ha-1′), 2.48–2.40 (2H, m, Ha-1, Hb-1′),
2.29–1.13 (21H, m, CH, CH2 in pentacyclic skeleton), 1.68 (3H, s, H-30), 1.19, 1.10, 1.09, 1.01,
1.00 (all s, 3H each, H-23–H-27) ppm; 13C-NMR (125 MHz, CDCl3): δ 215.8 (C-3), 176.6
(C-28), 154.3 (C-22′), 150.5 (C-20), 143.9 (C-20′, C-24′), 137.1 (C-7′, C-17′), 135.8 (C-18′ or
C-19′), 133.4 (C-10′), 133.1 (C-5′, C-9′), 126.4 (C-12′), 124.2 (C-14′), 124.0 (C-6′, C-8′), 122.8
(C-15′), 122.7 (C-21′, C-23′), 121.1 (C-13′), 118.1 (C-18′ or C-19′), 115.4 (C-11′), 111.5 (C-16′),
109.7 (C-4′, C-29), 90.5 (C-2′), 80.6 (C-3′), 57.4 (C-5), 56.5 (C-17), 51.3 (OCH3), 50.1 (C-9), 49.4
(C-18), 48.4 (C-4), 47.8 (N+CH3), 47.00 (C-1, C-19), 42.5 (C-14), 41.7 (C-2), 40.8 (C-8), 38.2
(C-13), 37.5 (C-10), 36.9 (C-22), 34.1 (C-7), 32.1 (C-16), 30.5 (C-21), 29.6 (C-15), 25.4 (C-12),
25.1 (C-23), 21.7 (C-25), 21.2 (C-11), 20.6 (C-1′), 19.4 (C-30), 19.3 (C-6), 16.2 (C-24), 16.1 (C-26),
14.7 (C-27) ppm; Analysis calculated for C56H67IN2O3: C, 71.32; H, 7.16. Found: C, 71.26;
H, 7.19; MS (HRMS): calculated for C56H67N2O3 [M − I]+ 815.5146; found: 815.5176.

3. Results and Discussion

In the synthesis of the target conjugate 4, the C-2 propargyl derivative of betulinic
acid 2, prepared from betulinic acid in several stages according to the method previously
developed by us [16], was used as the starting compound. The key stage of the scheme is
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alpha-alkylation with propargyl bromide of potassium enoxytriethylborate generated from
methylbetulonate 1 under the action of KN(SiMe3)2-Et3B (Scheme 1).
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Scheme 1. Synthesis of C-2 propynyl derivative 2. Reagents and conditions: a. 1. CrO3, H2SO4,
(CH3)2CO, 2 h; 2. CH2N2, Et2O, 0 ◦C; b. KN(SiMe3)2, Et3B, C3H3Br, DME, Ar, 2 h.

The iodophenyl derivative of (E)-4-(1H-indol-3-ylvinyl)-pyridine 3 was synthesized as
the second component to obtain conjugate 4. Heterocyclic compound, F16a, was obtained
by the reaction of gramine with pyridine-4-carbaldehyde involving tri-n-butylphosphine,
as described in [20]. The CuI-catalyzed coupling reaction of F16a according to Ullmann-
Goldberg with a two-fold excess of 1,4-diiodobenzene gave compound 3 in 50% yield (1H
and 13C NMR spectra) (Scheme 2).
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Scheme 2. Synthesis of compound 3. Reagents and conditions: a. pyridine-4-carbaldehyde, tri-n-
butylphosphine, CH3CN, 81 ◦C, Ar, 24 h; b. 1,4-diiodobenzene, piperidine-2-carboxylic acid, CuI,
K2CO3, DMF, 110 ◦C, Ar, 24 h.

Conjugate 4 was prepared using the Sonogashira cross-coupling reaction of triter-
penoid 2 with heterocyclic compound 3 in the presence of the CuI/Pd(PPh3)2 catalyst in
Et3N/DMF solvent mixture. The resulting adduct was transformed into a pyridinium
derivative without preliminary purification by quaternization of the pyridinium ring under
the action of CH3I in DMF (Scheme 3). The reaction proceeded at room temperature for
12 h producing the only product, the target hybrid compound 4, in 71% yield (1H and 13C
NMR spectra).
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It should be pointed out that our experiments to involved the F16a derivative con-
taining a bromophenyl substituent at the nitrogen atom of the indole ring (compound 3a)
in the Sonogashira reaction failed. In this case, the reaction proceeded only through the
acetylenic homodimerization of triterpenoid 2 giving a single, product 5 (Scheme 4).
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acetylenic homodimerization of triterpenoid 2 giving a single, product 5 (Scheme 4). 
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Scheme 4. Synthesis of compound 5. Reagents and conditions: a. PdCl2(PPh3)2, CuI, Et3N/DMF (1:1), 
Ar, 2 h. 

The structure of the resulting conjugate 4 was specified by applying 1D (1H, 13C, 
APT) and 2D homo-(COZY, NOESY) and heteronuclear (HSQC, HMBC) NMR experi-
ments. Nuclear-chemical shifts for the terpene nucleus and for 
(E)-4(1H-indol-3-ylvinyl)-N-methylpyridinium iodide were determined by their com-
parison with previously published data [16,18]. In the 1H NMR spectra, the presence of 
the fragment (E)-4(1H-indol-3-ylvinyl)-N-methylpyridinium iodide was confirmed by 
the characteristic signal for the pyridinium ring as a doublet at 8.49 ppm, J = 6.5 Hz; as 
well as a doublet of the vinyl group at 7.21 ppm, J = 16.0 Hz; a singlet of the methyl group 
at 4.80 ppm (N+CH3); four multiplets characteristic of the indole and phenyl fragments at 
8.09–8 07, 8.00–7.96, 7.52–7.44 and 7.33–7.30 ppm. One of the protons of the methylene 
group, Ha-1′, resonated as a doublet of doublets, J = 15.0, 5.0 Hz; the second proton Hb-1′ 
and proton Ha-1 appeared as a multiplet in the range of 2.48–2.40 ppm. Signals of carbon 
atoms characteristic of (E)-4(1H-indol-3-ylvinyl)-N-methylpyridinium iodide and phenyl 
ring in the range of 154.3–109.7 and 47.8 ppm were registered in the 13C NMR spectra. 
The signals of the C-2′ and C-3′ carbon atoms resonated at 90.5 and 80.6 ppm, respec-
tively. 

4. Conclusions 
Thus, we have developed an effective approach to produce a conjugate of the cyto-

toxic triterpenoid of betulinic acid with F16, carrying a fragment of a cationic compound 
as a vector for the delivery of a hybrid molecule into the mitochondria of tumour cells. 
We believe that this modification of betulinic acid will enhance its bioavailability and 
antitumour activity. 
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The structure of the resulting conjugate 4 was specified by applying 1D (1H, 13C,
APT) and 2D homo-(COZY, NOESY) and heteronuclear (HSQC, HMBC) NMR experi-
ments. Nuclear-chemical shifts for the terpene nucleus and for (E)-4(1H-indol-3-ylvinyl)-N-
methylpyridinium iodide were determined by their comparison with previously published
data [16,18]. In the 1H NMR spectra, the presence of the fragment (E)-4(1H-indol-3-ylvinyl)-
N-methylpyridinium iodide was confirmed by the characteristic signal for the pyridinium
ring as a doublet at 8.49 ppm, J = 6.5 Hz; as well as a doublet of the vinyl group at 7.21 ppm,
J = 16.0 Hz; a singlet of the methyl group at 4.80 ppm (N+CH3); four multiplets characteris-
tic of the indole and phenyl fragments at 8.09–8 07, 8.00–7.96, 7.52–7.44 and 7.33–7.30 ppm.
One of the protons of the methylene group, Ha-1′, resonated as a doublet of doublets,
J = 15.0, 5.0 Hz; the second proton Hb-1′ and proton Ha-1 appeared as a multiplet in the
range of 2.48–2.40 ppm. Signals of carbon atoms characteristic of (E)-4(1H-indol-3-ylvinyl)-
N-methylpyridinium iodide and phenyl ring in the range of 154.3–109.7 and 47.8 ppm were
registered in the 13C NMR spectra. The signals of the C-2′ and C-3′ carbon atoms resonated
at 90.5 and 80.6 ppm, respectively.

4. Conclusions

Thus, we have developed an effective approach to produce a conjugate of the cytotoxic
triterpenoid of betulinic acid with F16, carrying a fragment of a cationic compound as
a vector for the delivery of a hybrid molecule into the mitochondria of tumour cells.
We believe that this modification of betulinic acid will enhance its bioavailability and
antitumour activity.
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