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Abstract: Differences in the functional groups of the ligands can change the properties of the cy-
clometallated compounds and modify their suitability for various applications, such as catalysis and
biomedicine. Herein, we report the synthesis and characterization of a new series of cyclometallated
palladium compounds bearing an amine-functionalized thiosemicarbazone. The synthesis of the lig-
ands was achieved by condensation of the thiosemicarbazide and aminoacetophenone. The reaction
of the ligands with an appropriate metallating agent gave rise to the tetranuclear cyclometallated
compounds. The compounds were characterized by EA, 1H-NMR and IR spectroscopy.
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1. Introduction

Palladacycles have shown a wide variety of applications in recent years. The ubiquity
of these compounds in practical approaches is proof of the versatility and effectiveness
of the cyclometallated moiety. The challenges are the low solubility of the compounds
in aqueous media and their dependence on the use of organic solvents, which are main
contributors of waste in industry, e.g., the pharmaceutical industry, where solvent use
has an environmental impact because of the energy needed for the evaporation, cooling,
heating, and extraction of organic solvents [1]. This has motivated a change in the use of
metal catalysts to a more sustainable chemistry [2] that can be achieved by the exploration
of different organometallic compounds.

Functional groups can be included in palladacycles, modifying their properties and
their suitability for these and other applications [3]. In a recently published work, we
explored the effect of different substituents in the chemotherapeutic effect of thiosemicar-
bazone palladacycles [4].

Thiosemicarbazones show intrinsic properties in a wide variety of biological appli-
cations, including antiplasmodial [5] and antinocinoceptive [6] applications. Their cy-
clometallated derivatives have been studied in the past, but their potential as drugs keeps
expanding in antiplasmodic [7], antiprotozoic [8], and anticancer [9,10] research.

Herein, we report the synthesis and characterization of a new series of cyclometallated
palladium compounds bearing an amine-functionalized thiosemicarbazone. The synthesis
of the ligands was achieved by condensation of the thiosemicarbazide and aminoace-
tophenone. Reaction of the ligands with an appropriate metallating agent gave rise to the
tetranuclear cyclometallated compounds.

The compounds were characterized by EA, 1H-NMR, and IR spectroscopy.

2. Materials and Methods

Reagents and solvents were used as received.
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The synthesis of the ligands is achieved by the condensation reaction of
p-aminoacetophenone and the corresponding 4-substituted thiosemicarbazide.

First, the thiosemicarbazide (3.7 mmol, 1 equiv.) was dissolved in acidified water.
Then, the p-aminoacetophenone (500 mg, 3.7 mmol.) was added with stirring, at which
point it was possible to observe the precipitation of a white solid. The reaction mixture was
stirred overnight, and the precipitate was filtered off and washed with cold water, dried
under vacuum, and stored.
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Ligands a–d and compounds 1a–d were characterized by EA, IR, and 1H-NMR. NMR
spectra were recorded in deuterated DMSO.

3. Discussion
3.1. NMR

The NMR spectra of the ligands show signals characteristic for the thiosemicarbazone
moiety (e.g., Figure 1). The hydrazinic proton is assigned to the down field signal ca. 10 ppm,
which is a singlet. The AA′XX′ system appears as a pair of apparent doublets in the
aromatic region of the spectra, as expected. The NHR proton resonance can change its
shift depending on the substituent. For the phenyl group, the signal appears deshielded
ca. 10 ppm, in close proximity to the hydrazinic proton, whereas the alkyl substituents
change field and the multiplet appears ca. 8 ppm. In the case of the amide, there are
two signals for the non-equivalent protons.
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The signals for the remaining thiosemicarbazone ligands are assigned in Table 1.

Table 1. Assignation of the NMR signals of compounds a–d.

a b c d

NNH 10.06 (s, 1H) 9.99 (s, 1H) 9.89 (s, 1H) 9.87 (s, 1H)
NHR 8.16 (s, 1H) 8.30 (s, 1H) 8.32 (t, J = 6.0 Hz, 1H) 10.37 (s, 1H)
NH2 5.52 (s, 2H) 5.50(s, 2H) 5.48 (s, 2H) 5.53 (s, 2H)

H2/H6 7.72 (d, J = 8.3 Hz, 2H) 7.68 (d, J = 8.4 Hz, 2H) 7.63 (d, J = 8.3 Hz, 2H) 7.71 (d, J = 8.3 Hz, 2H)
H3/H5 6.70 (d, J = 8.2 Hz, 2H) 6.63 (d, J = 8.4 Hz, 2H) 6.54 (d, J = 8.4 Hz, 2H) 6.55 (d, J = 8.4 Hz, 2H)

R 7.79 (s, 1H) 3.01 (s, 3H) 3.59 (p, J = 6.9 Hz, 2H)
1.13 (t, J = 7.0 Hz, 3H)

7.58 (d, J = 7.8 Hz, 2H)
7.35 (t, J = 7.6 Hz, 2H)
7.18 (t, J = 7.3 Hz, 1H)

Me 2.20 (s, 3H) 2.18 (s, 3H) 2.18 (s, 3H) 2.27 (s, 3H).

Cyclometallation is evidenced in the NMR spectra of the products 1a–d by the changes
in the signals in the aromatic region (e.g., Figure 2). The aromatic AA′XX′ system of the
ligands disappears due to the metallation in the 6 position, changing the multiplicity and
shift of the remaining protons. The H5 signal appears as a singlet or as a small J doublet
while those for H2 and H3 change to a pair of coupled doublets, as can be seen in Table 2.

Table 2. Assignation of the NMR signals of compounds 1a–d.

1a 1b 1c 1d

NHR 6.37 (s, 2H) 6.64 (s, 1H) 6.66 (s, 1H) 9.04 (s, 1H)
NH2 5.43 (s, 2H) 5.44 (s, 2H) 5.41 (s, 2H) 5.62 (s, 2H)
H2 6.82 (d, J = 8.1 Hz, 1H) 6.84 (d, J = 8.2 Hz, 1H) 6.84 (d, J = 8.1 Hz, 1H) 6.95 (d, J = 8.2 Hz, 1H)
H3 6.14 (d, J = 8.1 Hz, 1H) 6.15 (d, J = 8.2 Hz, 1H) 6.16 (dd, J = 8.2, 2.1 Hz 1H) 6.18 (dd, J = 8.2, 2.1 Hz 1H)
H5 6.76 (s, 1H) 6.78 (s, 1H) 6.79 (d, J = 2.0 Hz, 1H) 6.81 (d, J = 2.1 Hz, 1H)

R - 2.74 (s, 3H) 3.19 (p, J = 6.9 Hz, 2H)
1.07 (t, J = 7.1 Hz, 3H)

7.65 (d, J = 8.1 Hz, 2H)
7.23 (t, J = 7.7 Hz, 2H)
6.88 (t, J = 7.3 Hz, 1H)

Me 2.12 (s, 3H) 2.17 (s, 3H) 2.17 (s, 3H) 2.30 (s, 3H)
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3.2. IR Spectroscopy

The IR spectroscopic data for the ligands and their corresponding cyclometallated
compounds show a shift in the position of the ν(C=N) band corresponding to the iminic
group (Table 3). The magnitude of this shift confirms coordination through the nitrogen lone
pair. Moreover, the ν(C=S) band is missing in the palladacycles due to coordination in thiol
form. Bands assignable to the N-H stretch can also be observed around 3300–3000 cm−1.

Table 3. Summary of the main bands that experience changes due to the metalation.

ν(C=N) ∆(ν(C=N)) ν(C=S)

a 1596 - 829
b 1594 - 830
c 1597 - 831
d 1591 - 830
1a 1572 24 -
1b 1571 23 -
1c 1576 21 -
1d 1567 24 -

4. Results

The main results of the study are summarized in Table 4.

Table 4. Summary of the experimental data.

Compound Yield% IR/cm−1 EA Found (Calcd) RMN

a 93
3304, 3210, 2971, 2950,

2932 ν(N-H) 1596
ν(C=N) 829 ν(C=S)

C, 52.0; H, 5.7; N, 26.8; S, 15.2
(C, 51.9; H, 5.8; N, 26.9; S, 15.4)

1H NMR (250 MHz, DMSO-d6) δ 10.06
(s, 1H, NNH), 8.16 (s, 1H, NH2), 7.79 (s,

1H, NH2), 7.72 (d, J = 8.3 Hz, 2H,
H2/H6), 6.70 (d, J = 8.2 Hz, 2H, H3/H5),

2.20 (s, 3H, Me)

b 95
3302, 3207, 2945 ν(N-H)

1594 ν(C=N) 830
ν(C=S)

C, 53.8; H, 6.6; N, 25.1; S, 14.3
(C, 54.0; H, 6.4; N, 25.2; S, 14.4)

1H NMR (250 MHz, DMSO-d6) δ 9.99 (s,
1H, NNH), 8.30 (s, 1H, NHMe), 7.68 (d,

J = 8.4 Hz, 2H, H2/H6), 6.63 (d,
J = 8.4 Hz, 2H, H3/H5), 3.01 (s, 3H,

NHMe), 2.18 (s, 3H, Me)
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Table 4. Cont.

Compound Yield% IR/cm−1 EA Found (Calcd) RMN

c 94
3300, 3205, 2969, 2944,

2928 ν(N-H) 1597
ν(C=N) 831 ν(C=S)

C, 55.6; H, 6.9; N, 23.5; S, 13.4
(C, 55.9; H, 6.8; N, 23.7; S, 13.6)

1H NMR (250 MHz, DMSO-d6) δ 9.89 (s,
1H, NNH), 8.32 (t, J = 6.0 Hz, 1H, NHEt),
7.63 (d, J = 8.3 Hz, 2H, H2/H6), 6.54 (d,

J = 8.4 Hz, 2H, H3/H5), 5.48 (s, 2H,
NH2), 3.59 (p, J = 6.9 Hz, 2H, CH2), 2.18
(s, 3H, Me), 1.13 (t, J = 7.0 Hz, 3H, CH3).

d 98
3355, 3279, 3182 ν(N-H)

1591 ν(C=N) 830
ν(C=S)

C, 63.1; H, 5.6; N, 19.6; S, 11.2
(C, 63.4; H, 5.7; N, 19.7; S, 11.3)

1H NMR (250 MHz, DMSO-d6) δ 10.37
(s, 1H, NHPh), 9.87 (s, 1H, NNH), 7.71

(d, J = 8.3 Hz, 2H/H6, H2), 7.58 (d,
J = 7.8 Hz, 2H, o-Ar), 7.35 (t, J = 7.6 Hz,
2H, m-Ar), 7.18 (t, J = 7.3 Hz, 1H, p-Ar),
6.55 (d, J = 8.4 Hz, 2H, H3/H5), 5.53 (s,

2H, NH2), 2.27 (s, 3H, Me).

1a 89 3324, 3162, 2912 ν(N-H)
1572 ν(C=N)

C, 34.8; H, 3.3; N, 18.0; S, 10.4
(C, 34.6; H, 3.2; N, 17.9; S, 10.3)

1H NMR (400 MHz, DMSO-d6) δ 6.82 (d,
J = 8.1 Hz, 1H, H2), 6.76 (s, 1H, H5), 6.37
(s, 2H, NH2), 6.14 (d, J = 8.1 Hz, 1H, H3),

5.43 (s, 2H, NH2), 2.12 (s, 3H, Me).

1b 91 3334, 3176, 2912 ν(N-H)
1571 ν(C=N)

C, 36.5; H, 3.5; N, 17.1; S, 9.6
(C, 36.8; H, 3.7; N, 17.2; S, 9.8)

1H NMR (400 MHz, DMSO-d6) δ 6.84 (d,
J = 8.2 Hz, 1H, H2), 6.78 (s, 1H, H5), 6.64

(s, 1H, NHR), 6.15 (d, J = 8.2 Hz, 1H,
H3), 5.44 (s, 2H, NH2), 2.74 (s, 3H, CH3),

2.17 (s, 3H, Me)

1c 86 3307, 3150, 2914 ν(N-H)
1576 ν(C=N)

C, 38.7; H, 4.0; N, 16.2; S, 9.2
(C, 38.8; H, 4.1; N, 16.4; S, 9.4)

1H NMR (400 MHz, DMSO-d6) δ 6.84 (d,
J = 8.1 Hz, 1H, H2), 6.79 (d, J = 2.0 Hz,
1H, H5), 6.66 (s, 1H, NHEt), 6.16 (dd,

J = 8.2, 2.1 Hz 1H, H3), 5.41 (s, 2H,
NH2), 3.19 (p, J = 6.9 Hz, 2H, CH2), 2.17
(s, 3H, Me), 1.07 (t, J = 7.1 Hz, 3H, CH3).

1d 94 3360, 3200, 3022, 2914
ν(N-H) 1567 ν(C=N)

C, 46.5; H, 3.5; N, 14.3; S, 8.1
(C, 46.3; H, 3.6; N, 14.4; S, 8.3)

1H NMR (400 MHz, DMSO-d6) δ 9.04 (s,
1H, NHPh), 7.65 (d, J = 8.1 Hz, 2H, o-Ar),

7.23 (t, J = 7.7 Hz, 2H, m-Ar), 6.95 (d,
J = 8.2 Hz, 1H, H2), 6.88 (t, J = 7.3 Hz,
1H, p-Ar), 6.81 (d, J = 2.1 Hz, 1H, H5),

6.18 (dd, J = 8.2, 2.1 Hz 1H, H3), 5.62 (s,
2H, NH2), 2.30 (s, 3H, Me).

5. Conclusions

A new family of thiosemicarbazone cyclometallated compounds bearing the amine
functional group has been satisfactorily synthesized and characterized.

The amine group is not affected by metallation and does not hinder the synthesis of
the cyclometallated compounds.

The IR analysis confirms the thione form in solid state of the thiosemicarbazone ligand
and the coordination to the palladium center in thiolic form, while the NMR analysis
confirms the ortho-metalation of the phenyl ring, confirming the proposed structure of
the compounds.
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