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Abstract: The reactivity of R–CH=N–(C6H4–2–SMe) with R = 4–Br–C6H5, R = 3–Br–C6H5, R = 2–
Cl–C6H5 with palladium (II) salts was investigated in this study. We were able to prepare and
characterize the cyclometallation complexes. The thioimines act as a [Csp2, phenyl, N, S] tridentate
group, according to the X-ray crystal structures in the latter complex.
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1. Introduction

Due to their applications in a variety of fields, the study of cyclopalladated compounds
has sparked a lot of interest in the last decade [1]. So far, a large number of palladacycles
with a σ(Pd/Csp2) or σ(Pd/Csp3) bond and a bidentate [C,X]− {X = N, P, O} ligand or a
tridentate [C,X,Y]− or [X,C,Y]− {X, Y = N, P, O} group have been described [2–6]. Few
articles, however, focus on cyclopalladated compounds containing tridentate [C, N, S]
ligands [7–10]. Some researchers reported the activation of the δ (Csp2, aryl–H) bond of the
thioimine: C6H5–CH=N–CH2–CH2–Set, which led to the syntheses and characterization
of the mononuclear compounds: [M{C6H4–CH=N–CH2–CH2–Set}Cl] {M = Pd, Pt} [11,12].
In our interest, we decided to study the replacement of the –CH2–CH2– moiety, as a
less flexible backbone between the two heteroatoms (N and S) could be important in
determining the nature of the final product and/or the ease with which the σ(C–H) bond is
activated. On this basis, we were inspired to make the ligands X–R–CH=N–(C6H4–2–SMe)
with [X = Br, Cl], [R = C6H5], and test their reactivity against palladium(II) salts. We present
a general procedure for activating the σ(Csp2–H) bond of thioimines using palladium(II)
salts in this paper, which has allowed us to isolate and characterize the first mononuclear
cyclopalladated complex containing a σ[Csp2, N, S] tridentate ligand.

2. Material and Methods
2.1. Synthesis of a–c

4-Br-benzaldehyde (a), 3-Br-benzaldehyde (b), and 2-Cl-benzaldehyde (c) were added
to ethanol with a corresponding amount of 2-methylthioaniline. The solution was then
refluxed for 4 h. After that time, the solvent evaporated and the mixture was allowed to
cool to room temperature (Scheme 1).
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was then added, and the mixture was then refluxed at 70 °C for 1 h. We allowed for a few 
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The 1H NMR spectra of the Schiff bases a–c reveal a common and representative fea-
ture of this class of organic compounds: the presence of a singlet at approximately, for a 
and b (Figure 1), 8.50, and 8.80 ppm for c, caused by the proton in the imine group, HC=N. 
The different benzyl ring substitutions in each ligand determine the number, position, and 
multiplicity of the corresponding signals in the benzyl ring. It is also important to note 
that the H6 proton’s signal resonates at higher frequencies than the H5 proton’s in proton 
NMR spectra, which is consistent with the strong unshielded effect caused by the imine 
group’s proximity, HC=N. The high-field singlet corresponds to the signal from the thi-
omethyl group. In the 6.56–7.40 ppm multiplet, the phenyl protons H9–H12 have overlap-
ping signals.  
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2.2. Synthesis of 1a–1c

To begin, we prepared a Li2[PdCl4] solution. In methanol, palladium chloride was
added to lithium chloride for 3 h. The appropriate amount of the corresponding ligand
was then added, and the mixture was then refluxed at 70 ◦C for 1 h. We allowed for a few
minutes of cooling before adding the sodium acetate (15 equivalents). During the addition,
solid precipitates are formed (Scheme 2).
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3. Result and Discussion
3.1. Synthesis a–c

The 1H NMR spectra of the Schiff bases a–c reveal a common and representative
feature of this class of organic compounds: the presence of a singlet at approximately, for a
and b (Figure 1), 8.50, and 8.80 ppm for c, caused by the proton in the imine group, HC=N.
The different benzyl ring substitutions in each ligand determine the number, position,
and multiplicity of the corresponding signals in the benzyl ring. It is also important to
note that the H6 proton’s signal resonates at higher frequencies than the H5 proton’s in
proton NMR spectra, which is consistent with the strong unshielded effect caused by the
imine group’s proximity, HC=N. The high-field singlet corresponds to the signal from
the thiomethyl group. In the 6.56–7.40 ppm multiplet, the phenyl protons H9–H12 have
overlapping signals.
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aromatic zone. The loss of the signal corresponding to the proton H6 and the decrease in 
the multiplicity of the proton H5 signal due to the formation of the (M-C) bond indicates 
the formation of the ortho-metallated species. In the 1H NMR spectra, the signal due to 
the imine proton appeared at lower fields of three compounds than for the free ligands, 
which were assigned at ca. 9.30 ppm for 1a and 1c, and 9.23 for 1b. The proton H5 of 1a–
1c forms an AB system (JHH = 8.2 Hz) as a doublet for 1a and 1b, at 8.12, 8.06, and 8.22 ppm 
for 1c. 
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SMe)}Cl] from discrete molecules. The molecule contains a tetracyclic system, composed 

Figure 1. 1H NMR spectrum of ligand b in DMSO-d6.

3.2. Synthesis 1a–1c

The most notable feature of the proton NMR spectrum of the derivatives 1a–1c is
the signal decoupling of the imine proton in comparison to the free Schiff base (Figure 2).
This behavior has previously been observed in other cyclopalladated compounds [C, N,
S] [13,14].

The activation of the C-H bond, which leads to the formation of the metallacycle, is
confirmed by the variation in the integration and multiplicity of the protons signals in the
aromatic zone. The loss of the signal corresponding to the proton H6 and the decrease in
the multiplicity of the proton H5 signal due to the formation of the (M-C) bond indicates
the formation of the ortho-metallated species. In the 1H NMR spectra, the signal due to the
imine proton appeared at lower fields of three compounds than for the free ligands, which
were assigned at ca. 9.30 ppm for 1a and 1c, and 9.23 for 1b. The proton H5 of 1a–1c forms
an AB system (JHH = 8.2 Hz) as a doublet for 1a and 1b, at 8.12, 8.06, and 8.22 ppm for 1c.
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4. X-ray Diffraction

The crystal structure of compound 1c, determined by X-ray diffraction, confirms
the spectroscopic data. The structure is constructed of [Pd{C6H4–2–Cl–(H)C=N(C6H4–2–
SMe)}Cl] from discrete molecules. The molecule contains a tetracyclic system, composed
of an aryl ring that shares a C–C bond with the chelate ring, which is formed by the
coordination of two heteroatoms (N and S) to the palladium, a five-membered palladacycle
in structure, and the other phenyl ring. The palladium atom is bound to chlorine, sulfur,
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imine nitrogen, and C(14) for the 1c atom in a slightly distorted square/planar environment.
This proved that the thioimines bind to palladium(II) in a specific way.

The lengths of the C=N bonds 1.307(6) Å in 1c are comparable to those found in
related palladacycles derived from Schiff bases [15]. The distance between the Cl and
the H(5) atom in compound 1c [2.914 Å and 2.904 Å] also indicates a weak Cl . . . .H....C(5)
intramolecular interaction [16]. Figures 3 and 4 show the molecular structure of 1c, as well
as their atom–labeling schemes. Tables 1 and 2 show the crystallographic data and a variety
of bond lengths and bond angles for structure 1c.

Chem. Proc. 2022, 4, x FOR PEER REVIEW 4 of 6 
 

 

of an aryl ring that shares a C–C bond with the chelate ring, which is formed by the coor-
dination of two heteroatoms (N and S) to the palladium, a five-membered palladacycle in 
structure, and the other phenyl ring. The palladium atom is bound to chlorine, sulfur, 
imine nitrogen, and C(14) for the 1c atom in a slightly distorted square/planar environ-
ment. This proved that the thioimines bind to palladium(II) in a specific way. 

The lengths of the C=N bonds 1.307(6) Å in 1c are comparable to those found in 
related palladacycles derived from Schiff bases [15]. The distance between the Cl and the 
H(5) atom in compound 1c [2.914 Å and 2.904 Å] also indicates a weak Cl….H....C(5) 
intramolecular interaction [16]. Figures 3 and 4 show the molecular structure of 1c, as well 
as their atom–labeling schemes. Tables 1 and 2 show the crystallographic data and a 
variety of bond lengths and bond angles for structure 1c.  

 
Figure 3. Molecular structure and atom–labeling scheme for (1c). 

 
Figure 4. Intermolecular interaction Cl….H….C(5) of molecular structure (1c). 

Table 1. Crystal data and structure refinement for 1c. 

Empirical formula C14H11Cl2NPdS 
Formula weight 402.63 
Temperature/K 100.0 
Crystal system triclinic 

Space group P-1 
a/Å 10.9824(2) 

Figure 3. Molecular structure and atom–labeling scheme for (1c).

Chem. Proc. 2022, 4, x FOR PEER REVIEW 4 of 6 
 

 

of an aryl ring that shares a C–C bond with the chelate ring, which is formed by the coor-
dination of two heteroatoms (N and S) to the palladium, a five-membered palladacycle in 
structure, and the other phenyl ring. The palladium atom is bound to chlorine, sulfur, 
imine nitrogen, and C(14) for the 1c atom in a slightly distorted square/planar environ-
ment. This proved that the thioimines bind to palladium(II) in a specific way. 

The lengths of the C=N bonds 1.307(6) Å in 1c are comparable to those found in 
related palladacycles derived from Schiff bases [15]. The distance between the Cl and the 
H(5) atom in compound 1c [2.914 Å and 2.904 Å] also indicates a weak Cl….H....C(5) 
intramolecular interaction [16]. Figures 3 and 4 show the molecular structure of 1c, as well 
as their atom–labeling schemes. Tables 1 and 2 show the crystallographic data and a 
variety of bond lengths and bond angles for structure 1c.  

 
Figure 3. Molecular structure and atom–labeling scheme for (1c). 

 
Figure 4. Intermolecular interaction Cl….H….C(5) of molecular structure (1c). 

Table 1. Crystal data and structure refinement for 1c. 

Empirical formula C14H11Cl2NPdS 
Formula weight 402.63 
Temperature/K 100.0 
Crystal system triclinic 

Space group P-1 
a/Å 10.9824(2) 

Figure 4. Intermolecular interaction Cl . . . .H . . . .C(5) of molecular structure (1c).

Table 1. Crystal data and structure refinement for 1c.

Empirical formula C14H11Cl2NPdS
Formula weight 402.63
Temperature/K 100.0
Crystal system triclinic

Space group P-1
a/Å 10.9824(2)
b/Å 18.2981(3)
c/Å 14.3485(3)
α/◦ 90
β/◦ 99.9460(10)
γ/◦ 90
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Table 1. Cont.

Volume/Å3 2840.10(9)
Z 8

ρcalc (g/cm3) 1.876
µ/mm−1 15.235

F(000) 1572.0
Crystal size/mm3 0.1 × 0.05 × 0.03

Radiation CuKα (λ = 1.54184)
θ range for data collection/◦ 4.83 to 149.41

Index ranges −13 ≤ h ≤ 13, −22 ≤ k ≤ 22, −17 ≤ l ≤ 17
Reflections collected 83,138

Independent reflections 11,516 [Rint = 0.0899, Rsigma = 0.0514]
Data/restraints/parameters 11,516/0/690

Goodness-of-fit on F2 1.040
Final R indexes [I >= 2σ (I)] R1 = 0.0369, wR2 = 0.0803

Final R indexes [all data] R1 = 0.0583, wR2 = 0.0881

Table 2. Bond length (Å) and bond angles (o) for molecular structure 1c.

Bond Lengths

Pd-C(14) 1.986 (5) Pd-N 2.008 (4)
Pd-Cl 2.304 (1) Pd-S 2.375 (1)
S-C(2) 1.783 (6) S-C(1) 1.812 (7)
N-C(8) 1.307 (7) N-C(7) 1.416 (7)

C(2)-C(7) 1.400 (8) C(2)-C(3) 1.393 (8)
C(3)-C(4) 1.364 (7) C(4)-C(5) 1.380 (8)
C(5)-C(6) 1.386 (8) C(6)-C(7) 1.400 (7)
C(8)-C(9) 1.441 (8) C(9)-C(10) 1.393 (8)

C(9)-C(14) 1.422 (8) C(10)-C(11) 1.387 (8)
C(10)-Cl 1.751 (6) C(11)-C(12) 1.376 (7)

C(13)-C(14) 1.395 (8) C(12)-C(13) 1.397 (8)

Bond Angels

N-Pd-S 85.33 (1) C(14)-Pd-Cl 95.09 (1)
S-C(2)-C(3) 119.89 (4) Cl-S-Pd 103.03 (2)
N-C(8)-C(9) 115.52 (4) C(7)-C(2)-S 120.15 (4)
C(2)-C(7)-N 118.3 (4) N-Pd-C(14) 82.10 (2)
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