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Abstract: Pyrazoles and their derivatives have attracted particular attention because they have a
wide variety of biological activities, and recently, we found that 4,4’-(arylmethylene)-bis-(1-phenyl-3-
methyl-1H-pyrazole-5-ols) have good leishmanicidal activity against promastigotes of Leishmania
mexicana. 4-Arylidenepyrazolone derivatives also have antiparasitic activity and are intermediates in
the synthesis of these bispirazoles that are formed by the equimolar reaction of 3-methyl-1-phenyl-
2-pyrazoline-5-one with aromatic aldehydes. In order to obtain new compounds with potential
leishmanicidal activity, we attempted to synthesize several 4-arylallylidenepyrazolone derivatives
through the reaction of pyrazol-3-one with different cinnamaldehydes. We report here the study of
the synthesis of some 4-arylallylidenepyrazolone derivatives from the reaction between 5-methyl-
2-phenyl-2,4-dihydro-3H-pyrazol-3-one and 4-nitrocinnamaldehyde. We found that L-proline and
FeCl3 were the best catalysts, and we also observed a solvent effect in the reaction. Our preliminary
results indicate that aprotic solvents favor the formation of the 2Z isomer instead of the 2E isomer.

Keywords: pyrazoles; 4-arylallylidenepyrazolones; cinnamaldehydes; valence isomerization

1. Introduction

In heterocyclic chemistry, pyrazolones correspond to a type of important molecules
with a wide range of reported biological activities. Currently, several drugs on the market
possess the pyrazolone ring as a key structure, and its presence confers a wide range
of properties such as anti-inflammatory, antiviral, antibacterial, antifungal, and antipar-
asitic activities, among others [1]. Derivatives of 2,4-dihydro-3H-pyrazol-3-one include
edaravone and 4,4′-(arylmethylene)bis(1-phenyl-3-methyl-1H-pyrazol-5-ol). Edaravone,
(3-methyl-1-phenyl-2-pyrazoline-5-one) (1) is a free-radical scavenger that is used as a
treatment for cardiovascular diseases [2], as a neuroprotectant [3], and has been approved
to treat amyotrophic lateral sclerosis (ALS) [4]. 4,4′-(Arylmethylene)bis(1-phenyl-3-methyl-
1H-pyrazol-5-ol) derivatives have several biological activities and have been used as an-
tiviral, antibacterial, anticancer and anti-inflammatory [5–9] compounds. Additionally,
we recently found good anti-trypanosomatid activity of these compounds, which will be
reported elsewhere.

Other derivatives of biological interest are the products obtained by nucleophilic
addition of edaravone 1 to various acceptors (Scheme 1) [10]. When these acceptors
are nitroalkenes, the corresponding Michael addition products are obtained, and the
use of an asymmetric catalyst yields chiral pyrazol-3-ol derivatives [11–13]. A second
Michael reaction with cinnamaldehyde allows the production of spiro[cyclohexanone-
pyrazolones] in moderate to high yields with moderate to good diastereoselectivities and
excellent enantioselectivities [14]. Similar spiropyrazolones can also be obtained when
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pyrazolone 1 is treated with dibenzalacetones in the presence of an amine catalyst to afford
spiro[cyclohexanone-pyrazolones] derivatives with high yields and high stereoselectivities.
These spiro-derivatives are obtained by cascade [5 + 1] double Michael reactions [15].
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Scheme 1. Different pyrazolone derivatives. 
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through a Michael–Aldol cascade reaction [17,19,20]. The same reaction under NHC-cat-
alyzed conditions, using chiral triazolium salt and Na2CO3 as base, results in the enanti-
oselective synthesis of dihydropyranone-fused pyrazole [21]. 

In all the above reactions, the addition of 1 occurs by a 1,4 addition; however, it is 
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The equimolar reaction of 1 with α,β-unsaturated trifluoromethyl ketones affords triflu-
oromethylated pyranopyrazoles after a tandem Michael addition/aromatization/cyclization
reaction [16]. The same structure is obtained when 1 reacts with trans-cinnamaldehydes
using diaryl prolinol silyl ethers as catalyst [17,18]. However, the reaction with a second
molecule of cinnamaldehyde, using the same catalyst, affords spyropyrazolones through
a Michael–Aldol cascade reaction [17,19,20]. The same reaction under NHC-catalyzed
conditions, using chiral triazolium salt and Na2CO3 as base, results in the enantioselective
synthesis of dihydropyranone-fused pyrazole [21].

In all the above reactions, the addition of 1 occurs by a 1,4 addition; however, it is
also possible, in the case of reactions with cinnamaldehydes, to have a 1,2 addition, which
affords 4-arylallylidenepyrazolone derivatives after a Knoevenagel condensation [21–23].
These condensates are similar in structure to 4-arylidenepyrazolones, which are inter-
mediates in the synthesis of 4,4′-(arylmethylene)bis(1-phenyl-3-methyl-1H-pyrazol-5-ols),
and are formed by the equimolar reaction of 3-methyl-1-phenyl-2-pyrazoline-5-one with
aromatic aldehydes [24], and among the different biological activities reported for 4-
arylidenepyrazolones, they also present antiparasitic activity [25].

Our laboratory has worked on the synthesis of heterocyclic compounds with pos-
sible antiparasitic activity [26,27], and in view of the great structural similarity that 4-
arylallylidenepyrazolones present versus 4-arylidenepyrazolones, we attempted to syn-
thesize several 4-arylallylidenepyrazolone derivatives through the reaction of 1 with different
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cinnamaldehydes. We report here the initial study of the synthesis of 4-arylallylidenepyrazolones,
using the reaction between 3-methyl-1-phenyl-2-pyrazoline-5-one (1) and 4-nitrocinnamaldehyde
(2) as a model, as well as different catalysts and solvent conditions.

2. Methods
2.1. General

All solvents and reagents used in the investigation were from Sigma-Aldrich and
were used without further purification. Melting points were determined on a Büchi Melt-
ing Point M-560 apparatus. The 1H- and 13C-NMR spectra were recorded at 298 K on a
BRUKER Ascend 500 MHz spectrometer using CDCl3 as the solvent. The photoisomeriza-
tion was evaluated on an Oxford Instruments Pulsar benchtop NMR 60 MHz Spectrometer.
Chemical shifts are expressed in ppm with TMS as an internal reference (TMS, δ = 0 ppm)
for protons. The IR spectra were recorded with a VARIAN 660-IR/FT-IR spectrometer
(4000–400 cm−1). Reactions were monitored by TLC on silica gel using chloroform and 1:4
ethyl acetate/hexane as the mobile phase, and compounds were visualized by UV lamp at
254 nm. Kinetic data were calculated in GraphPad Prism (GraphPad Software, San Diego,
CA, USA).

2.2. General Procedure for the Synthesis of
(4Z)-5-Methyl-4-[3-(4-nitrophenyl)-allylidene]-2-phenyl-2,4-dihydro-3H-pyrazol-3-one 3 and 4

To an equimolar solution of 4-nitrocinnamaldehyde (0.564 mmol) and edaravone
(0.564 mmol) in 2.0 mL of solvent, 0.0564 mmol of catalyst were added and the mixture
was stirred until the reaction was complete (Table 1). The solvent was evaporated under
reduced pressure and the residue was dissolved with 2.0 mL of ethanol. Finally, with
constant stirring, water was added to obtain 50% EtOH and the mixture was stored at 4 ◦C.
The precipitates formed were collected by filtration, rinsed with cool 50% EtOH and dried
under vacuum. After column chromatography on silica gel using chloroform as the eluent,
3 and 4 were obtained as pure products.

Table 1. Optimization of the Reaction Conditions.
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5 DABCO (10%) Toluene 120 75 50 25
6 DABCO (10%) Et2O 120 39 23 16
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Table 1. Cont.

Entry Catalyst
(mol%) Solvent Time

(min)
Yield
(%) 1

Yield 3
(%) 1

Yield 4
(%) 1

15 FeCl3 (10%) EtOH 90 80 60 20
16 FeCl3,6H2O (10%) EtOH 120 84 66 18
17 HMTA (10%) EtOH 90 44 42 2
18 L-Proline (10%) EtOH 60 85 69 16
19 Morpholine (10%) EtOH 90 46 40 6
20 Alopurinol (10%) EtOH 180 41 38 3

1 Determined by 1H-NMR spectroscopy.

(4Z)-5-methyl-4-[(2E)-3-(4-nitrophenyl)-allylidene]-2-phenyl-2,4-dihydro-3H-pyrazol-
3-one (3): Brown powder; mp: 216 ◦C–218 ◦C; 1H-NMR (500 MHz, CDCl3) δ 2.30 (s, 3H),
7.20 (dd, J = 11.6, 0.8 Hz, 1H), 7.20 (tt, J = 7.4, 1.1 Hz, 1H), 7.24 (d, J = 15.7 Hz, 1H), 7.42 (dd,
J = 8.5, 7.5 Hz, 2H), 7.78 (d, J = 8.8 Hz, 2H), 7.94 (dd, J = 8.8, 1.1 Hz, 2H), 8.26 (d, J = 8.8 Hz,
2H), 8.74 (dd, J = 15.7, 11.5 Hz, 1H); 13C-NMR (126 MHz, CDCl3) δ 12.9, 118.8, 124.4, 125.1,
127.0, 128.0, 129.0, 138.3, 141.6, 142.5, 145.1, 148.5, 149.5, 162.8. FTIR (cm−1): 1687, 1614,
1592, 1511, 1489, 1337, 1131, 977.3, 758.0.

(4Z)-5-methyl-4-[(2Z)-3-(4-nitrophenyl)-allylidene]-2-phenyl-2,4-dihydro-3H-pyrazol-
3-one (4): Brown powder; mp: 217 ◦C–219 ◦C; 1H-NMR (500 MHz, CDCl3) δ 2.58 (s, 3H),
7.19 (tt, J = 7.4, 1.1 Hz, 1H), 7.33 (d, J = 13.5 Hz, 1H), 7.42 (dd, J = 8.5, 7.5 Hz, 1H), 7.54 (dd, J
= 12.3, 0.8 Hz, 1H), 7.58 (dd, J = 13.4, 12.4 Hz, 1H), 7.72 (d, J = 8.8 Hz, 2H), 7.94 (dd, J = 8.7,
1.0 Hz, 2H), 8.29 (d, J = 8.8 Hz, 2H); 13C-NMR (126 MHz, CDCl3) δ 12.9, 118.7, 118.8, 124.4,
125.1, 127.1, 128.1, 128.7, 129.0, 138.3, 141.6, 142.5, 145.1, 149.5, 162.9. FTIR (cm−1): 1671,
1613, 1523, 1339, 1155, 1000, 838.3, 761.1.

2.3. Photoisomerization of 4

A solution of 4 in CDCl3 was irradiated with a blue LED light, and the isomeriza-
tion was followed by 1H-NMR. Data were analyzed with the statistical software Graph-
Pad Prism.

3. Results and Discussions

4-Arylallylidenepyrazolones were synthesized using NaOAc as a catalyst, and acetic
anhydride [23] and acetic acid [28] as the solvents under refluxing conditions. The uncat-
alyzed reaction under reflux conditions has also been reported [22]; however, the best yield
was reported in the uncatalyzed reaction at room temperature using THF as solvent after
24 h of reaction [21].

We began our studies with 3-methyl-1-phenyl-2-pyrazolin-5-one (1) and 4-
nitrocinnamaldehyde (2) as test substrates. When the reaction was carried out without
the catalyst in THF, a 36% yield of product 3 was obtained after 24 h of reaction (Table 1,
entry 1). However, when the reaction was performed with DABCO (10 mol%) as the
catalyst at room temperature in EtOH (entry 2), the unsaturated pyrazolone 3 was obtained
in 73% yield (based on 1H-NMR spectroscopy) after 60 min of reaction. In addition, in both
reactions the pyrazolone 4 was also obtained with 6% and 5% yields, respectively, and no
evidence of the formation of a Michael adduct was observed.

Spectroscopic analysis of 3 and 4 revealed that both compounds are the result of the
Knoevenagel condensation of pyrazolone 1 to 4-nitrocinnamaldehyde; however, to our
surprise, pyrazolone 4 exhibited a cis configuration at C2 instead of the trans configuration
observed in 2 (Scheme 2). The 1H-NMR spectrum of 3 is in agreement with the expected
structure (Scheme 2). Hβ appears at 8.74 ppm and shows two couplings, H-H, 3Jβ-α = 11.5
and Hz and 3Jβ-γ = 15.7 Hz, while Hα and Hγ appear at 7.20 and 7.24 ppm, respectively.
These couplings show that the obtained isomer corresponds to 2E. On the other hand,
in the case of pyrazolone 4, Hβ appears at 7.58 ppm and shows two couplings, H-H,
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3Jβ-α = 12.4 Hz and 3Jβ-γ = 13.5 Hz. This proton shows an upfield shift of 1.16 ppm,
possibly due to loss of conjugation owing to the conformation of the 2Z isomer.
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The possible mechanism for the formation of the 4-arylallylidenepyrazolone 4 is
depicted in Scheme 3. The Knoevenagel condensation of 1 with 2 affords 3 as the only
regioisomer, as confirmed by 1D-NOESY. The 4-arylallylidenepyrazolone 3 is a 1-oxatriene
that undergoes a reversible pericyclic oxa-6π-electrocyclization process until the 2H-pyran
structure 5a (valence isomerization) is obtained [29]. In 5a the Hγ is in an axial position,
while in their conformer 5b, it would be in an equatorial position. A second valence isomer-
ization of 5b allows the production of the pyrazolone 4. Generally, compounds that have a
2H-pyran ring attached to an aromatic ring are stable enough to remain in the cyclic form
(i.e., 2H-chromenes), otherwise, they tend to be unstable and prefer the opened isomeric
form [30]. Likewise, simpler dienones, which could adopt a stable planar conformation,
existed in the opened form. This is favored in the case of the 4-arylallylidenepyrazolones
since they present an extended π-system [31]. Furthermore, no spectroscopic evidence of
the formation of 5a or 5b was observed.
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A kinetic study of the photoisomerization of a solution of 4 in CDCl3 was carried out,
in which the solution was irradiated with a blue LED light and evaluated by 1H-NMR,
observing that the half-life of 4 was 25 min, and at equilibrium 98.6% pyrazolone 3 was
formed (Figure 1).

Different solvents were screened (entries 2–7) and it turned out that the highest total
yield was obtained in EtOH. In all the evaluated solvents, both diastereomeric pyrazolones
3 and 4 were obtained, except in THF and acetonitrile, where only isomer 3 was formed,
both with 75% yield. In the other solvents, the highest stereoselectivity was obtained in
EtOH with a 14.6:1 diastereomeric ratio of 3 and 4. Additional studies on the effect of
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catalyst loading have shown that the best yield was observed with 10 mol%, yielding
pyrazolones 3 and 4 with 78% yield (Table 1, entries 2, 8–10). Finally, using EtOH as a
solvent, the effect of the catalyst on the reaction was evaluated (entries 11–20). In all cases,
pyrazolone 3 was the main product. The uncatalyzed reaction produced a 55% yield with
no stereoselectivity (entry 11), while FeCl3 and L-proline were the best catalysts with 84%
and 85% of total yields, respectively.
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4. Conclusions

The synthesis of the (4Z)-5-methyl-4-[3-(4-nitrophenyl)-allylidene]-2-phenyl-2,4-dihydro-
3H-pyrazol-3-one isomers 3 and 4 can be easily carried out through the Knoevenagel
reaction between edaravone (1) and 4-nitrocinnamaldehyde (2). Both pyrazolones were
formed in most of the solvents used; however, it can be observed that in protic solvents the
diastereomeric ratio favored the pirazolone 3 (2E), while in aprotic and nonpolar solvents,
the formation of the pirazolone 4 (2Z) was increased. In THF and acetonitrile the synthesis
of 4 was stereospecific.

Finally, L-proline and FeCl3 were the best catalysts, and with both, the diastereotopic
ratio obtained was about 4:1; however, using DABCO in EtOH, good yield and a high
diastereotopic ratio were obtained, which favored the synthesis of pyrazolone 3.
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